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Abstract

Individuals with borderline intellectual functioning (BIF), defined by intelligence quotients (1Q)
between 70 and 85, face persistent disadvantages in education, employment, and social
participation. Brain-artificial intelligence interfaces (BAls) are defined as Al-integrated,
co-adaptive, closed-loop extensions of bidirectional brain—computer interfaces (BCls)
that decode neural signals and deliver context-aware feedback in real-time. Unlike open-
loop BCls, BAls enable continuous two-way interaction between the human brain and Al,
providing adaptive support for working memory, attentional control, and procedural guidance.
This paper analyzes the structural barriers affecting individuals with BIF and evaluates the
potential for ethically designed BAls to enhance workforce participation through integration
as cognitively augmented workers (CAWs). Economic modeling suggests substantial
national benefits, including gains in gross domestic product (GDP), higher tax revenues,
and reduced reliance on welfare systems. Safeguards are outlined for protecting mental
autonomy, governing neural data, and ensuring equitable labor regulation. A phased
implementation program is further proposed, linking engineering trials and workplace pilots
to quasi-experimental evaluation and general equilibrium analysis. Taken together, these
elements constitute the paper’s core contribution: a unified conceptual, economic, and
governance framework for integrating individuals with BIF as CAWs through co-adaptive
BAls. Responsibly developed BAls, grounded in co-adaptation, offer a pathway to individual
empowerment and inclusive societal progress through scalable cognitive augmentation.
Keywords: Al; brain-computer interface; neurotechnology; borderline intellectual functioning;

cognitive augmentation

INTRODUCTION

Individuals with borderline intellectual functioning (BIF), commonly defined as having an
intelligence quotients (IQ) between 70 and 85 (Peltopuro et al., 2023), face distinctive cognitive and
adaptive challenges that limit their educational and employment opportunities. Under the conventional
assumption of a normal distribution of IQ_scores (p=100, ¢ =15), the range of 70 to 85 aligns with
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z-scores in the interval [-2, -1], representing approximately 13.6% of the population. This estimate
remains approximate, as observed prevalence rates vary according to the context of the assessment
and the sampling strategies employed. Despite their significant representation, individuals with
BIF are seldom identified as having special needs (Orio-Aparicio et al., 2025), resulting in limited
support. These challenges are particularly evident in labor market outcomes. A Finnish population
study found that individuals with BIF were employed at roughly half the rate of the general
population, indicating a substantial employment gap (Peltopuro et al., 2023). These findings
indicate markedly reduced long-term economic participation among the BIF group (Peltopuro et
al., 2023).

A bidirectional brain-computer interface (BCI) integrated with Al in a co-adaptive, closed-loop
configuration, hereafter referred to as a brain-Al interface (BAI), may present a promising solution
to this problem by enabling dynamic and reciprocal communication between the human brain
and an Al system. Hughes et al. (2020) define bidirectional BCls as systems that not only decode
neural signals to control external devices but also deliver somatosensory feedback to the brain
through electrical stimulation. These interfaces establish a two-way channel between the brain and
the external world by integrating motor output and sensory input. Building upon this foundation,
the BAI, as a co-adaptive and closed-loop form of bidirectional BCI, can be conceptualized as an
advanced architecture in which the brain interacts directly with an Al system capable of adaptive
response, contextual interpretation, and real-time cognitive collaboration. In theory, this enables
the Al to continuously support the user’s cognition by providing memory prompts, guidance, and
learning support.

'The system can dynamically adapt to the user’s neural responses in real-time, as demonstrated in
BClI-based approaches to cognitive augmentation involving memory, attention, problem-solving,
and executive function (Cinel et al., 2019; Hampson et al., 2006). While these applications remain
within the scope of BCI technologies, the BAI concept represents an advanced configuration
within this framework, capable of interpreting higher-order cognitive intent, supporting contextual
understanding, and modulating its behavior through continuous co-adaptation. By establishing a
constant closed-loop between the human brain and Al, a BAI may further enhance these functions
beyond the capacities demonstrated in current BCI research.

Within this framework, individuals with BIF supported by BAI systems may function as
cognitively augmented workers (CAWs), capable of performing complex work tasks that might
otherwise exceed their unaided cognitive capacity (Fig. 1). With proper assistance, CAWs could
contribute more effectively to modern economies by filling roles that utilize their Al-enhanced
skills. This approach provides new insights into the potential contributions of this historically
marginalized group. In the sections that follow, we examine the workforce disparities faced by
individuals with BIE, explore how a BAl-based technology might address these challenges, and
analyze the socioeconomic and ethical implications of deploying CAWs at scale.

LOW LABOR FORCE PARTICIPATION AMONG INDIVIDUALS
WITH BORDERLINE INTELLECTUAL FUNCTIONING (BIF):
STRUCTURAL BARRIERS AND SOCIOECONOMIC IMPLICATIONS

Labor force participation and employment outcomes for individuals with BIF are substantially
lower than those of neurotypical individuals (Peltopuro et al., 2023). Across various studies,
individuals with BIF experience higher rates of unemployment than the general population
(Emerson et al., 2018; Peltopuro et al., 2023). For instance, in Finland, approximately 43.6% of
working-age individuals with BIF were employed, compared to 88.1% in the general working
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Brain-Artificial Intelligence Interface (BAI). A BAI is a specialized, Al-integrated
form of brain-computer interface that enables bidirectional, co-adaptive communication
between the human brain and computational systems. BAIs interpret neural signals in
real-time, contextualize them through Al-driven analysis and deliver adaptive feedback
to support memory, attention, decision-making, and emotional regulation. By combining
neural interfacing with Al-based adaptability, BAls extend traditional BCls and provide
personalized, evolving support aligned with the user’s goals and context.

Cognitively Augmented Worker (CAW). A CAW is an individual whose cognitive
performance is enhanced through continuous, adaptive interaction with a BAL. CAWs
receive real-time assistance for memory retrieval, attentional control, procedural execution,
and emotional modulation. Dynamic co-adaptation allows users to refine and shape the
interaction over time, enabling complex, cognitively demanding work while preserving

autonomy and agency.

Fig. 1. Definition Box: Brain-Atrtificial Intelligence Interface (BAI) and Cognitively Augmented Worker (CAW).

population (Peltopuro et al., 2023). Additionally, 30.8% of individuals with BIF were classified
as pensioners, whereas only 5.3% of the general population received a pension (Peltopuro et al.,
2023). Similarly, research from the United Kingdom indicates that full-time employment rates
for individuals with BIF range between 42% and 47%, which is significantly lower than the rates
observed among neurotypical peers, ranging from 54% to 62% (Emerson et al., 2018). Although
some individuals with BIF secure employment, they are disproportionately represented in part-
time roles and are often concentrated in low-skilled, low-wage positions that offer poor job security
(Emerson et al., 2018; Peltopuro et al., 2023). Consequently, they frequently earn considerably less
than their neurotypical counterparts, which contributes to greater economic hardship within this
demographic (Emerson et al., 2018; Orio-Aparicio et al., 2025; World Economic Forum, n.d.).
Many become trapped in a cycle of underemployment or irregular work. This leads to greater
dependence on welfare systems or family support (Peltopuro et al., 2023).

Specific data on individuals with BIF are scarce because they are not often tracked separately.
Nonetheless, it is evident that many face a steep climb as they experience chronic unemployment
or instability in low-wage jobs, which further restricts personal income and contributes to broader
socioeconomic challenges. Recent findings highlight this pronounced labor market gap, showing
that individuals with BIF experience significantly higher unemployment rates, lower earnings, and
a greater reliance on social safety nets than the general workforce (Emerson et al., 2018; Peltopuro
etal.,2023).

Given these persistent disparities, there is a growing imperative to reconsider how individuals
with BIF can be more effectively integrated into the labor force. Rather than viewing this
population solely through the lens of deficit or dependency, a shift toward capability-oriented
frameworks that leverage emerging technologies may prove beneficial. Such an approach recognizes
the latent potential of individuals with BIF when they are supported by tailored vocational
training, intelligent assistive systems, and inclusive workplace practices enabled by technological

advancement.
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THE ROLE OF BRAIN-ARTIFICIAL INTELLIGENCE INTERFACES
(BAIs) IN WORKFORCE AUGMENTATION

Traditional BCI systems have predominantly functioned as unidirectional interfaces, enabling
users to issue commands or control cursors based on neural activity, or to receive one-way
stimulation that offers only limited feedback (Zhang et al., 2020). In contrast, recent advancements
in bidirectional BCI architectures have introduced real-time bidirectional control, integrating motor
intention decoding with the delivery of sensory feedback. For instance, individuals with severe
motor impairments have regained ambulatory control and perceived bilateral leg sensations through
such systems, thereby partially restoring sensorimotor function (Lim et al., 2025). Building on
this paradigm, BAI holds significant potential not only for restoring disrupted motor and sensory
pathways but also for augmenting cognitive capacities in individuals with BIF, potentially enabling
them to perform structured tasks at levels comparable to neurotypical workers.

In practical terms, BAls for CAWs may function as described below. CAWs are equipped with
neural interfaces, either implanted or in the form of a non-invasive headset, which are expected to
monitor brain signals associated with attention, comprehension, memory, and stress. Al companion
systems, tuned to the CAWS’ cognitive profiles, analyze these signals along with the context of the
tasks at hand. While current applications primarily focus on preventing declines in user efficiency
(Karim et al., 2024; Kumar et al., 2023), it is conceivable that BAI-based systems intended to
enhance cognitive performance may become viable in the near future. Supporting this possibility,
evidence suggests that BCI-based neurofeedback training can enhance cognitive functions in
conditions such as attention deficit hyperactivity disorder and mild cognitive impairment (Edelman
et al., 2025). Such assistance may help CAWs recall procedures, recognize patterns, and focus on
relevant details.

A detailed, phased technological development roadmap has been outlined to facilitate this
integration, offering a promising outlook for future advancements.

Neuro-Artificial Intelligence (Al) Infrastructure and Software Development
The first phase focuses on constructing the fundamental BAI platform by advancing both the

neural interface hardware and the Al-driven software pipeline. A key goal is to achieve reliable,
real-time translation of brain signals into actionable commands for Al systems, thereby forming a
robust communication loop between the user’s brain and the artificial agent.

To frame the complex functionality of future BAls, the system architecture can be divided
into two interdependent domains: Research A and B. Research A encompasses the acquisition,
preprocessing, and decoding of neural signals, focusing on both hardware and algorithmic
mechanisms for extracting meaningful information from brain activity. Research B, by contrast,
concerns the return flow of information. It focuses on how processed signals can be fed back into
the brain or interface to modulate neural activity, enhance cognitive performance, and support
adaptive plasticity. While each component addresses a distinct stage within the signal-to-action
pipeline, they are increasingly likely to function as an integrated loop in more advanced systems.
These developments collectively suggest the potential for cognitive augmentation through tightly
integrated neural-Al systems.

Research A: Neural Signal Processing and Interpretation
Neural signal processing and interpretation form the foundation of any BCI system, beginning
with the seamless acquisition of brain activity and extending to real-time preprocessing and

decoding. To meet the stringent temporal and energy constraints of modern applications,
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researchers have increasingly focused on both hardware-level signal conditioning and software-level
interpretation. High-bandwidth neural interfaces and on-device preprocessing units are essential
for capturing clean, high-dimensional brain signals (Luan et al., 2020).

Building on this foundation, Liu et al. (2025) propose a memristor-based neuromorphic decoder
that integrates signal preprocessing and feature extraction into a single-step matrix operation. This
hardware innovation yields a 216-fold increase in decoding throughput and a 1,643-fold reduction
in energy consumption compared to conventional CPU-based approaches, thereby enabling real-
time performance in resource-limited environments.

In parallel, algorithmic developments have advanced the accuracy and robustness of neural
decoding. Convolutional neural networks (CNNs) and long short-term memory (LSTM)
networks have been applied to extract motor intentions and cognitive states from neural recordings
(Kuo et al., 2024; Viviani et al., 2023), while Bayesian inference methods have enhanced
electroencephalography (EEG)-based communication paradigms for individuals with paralysis
(Hong et al., 2023).

A striking example of decoder-centered innovation is provided by Littlejohn et al. (2025), who
developed a streaming neural-to-speech Al decoder capable of translating intracortical signals
from a completely paralyzed individual into fluent, audible speech in near real-time. This system
demonstrates the extraordinary potential of deep learning—based decoders to restore expressive
communication by directly mapping intended neural activity to continuous speech output, bridging
the gap between cognitive intent and social interaction.

While these breakthroughs highlight the expressive potential of neural decoders, their practical
realization requires deployment in real-world, resource-constrained environments. To this end,
researchers have begun integrating neural decoding systems at the edge. To support real-time
operation in low-power settings, hardware-embedded deep learning frameworks have been coupled
with neural interface systems. Rokai et al. (2023) present a two-stage spike-sorting pipeline that
combines self-supervised feature embedding with supervised spike detection. Optimized for real-
time execution on edge Tensor Processing Units (TPUs), their system processes neural signals
directly from brain implants without the need for cloud offloading. By collocating TPU-based
inference with neural recording hardware, the system achieves low-latency spike classification and
sorting at the edge, thereby substantially reducing reliance on centralized computation.

'These innovations considerably improve the efficiency of capturing and decoding neural signals.
Yet the next frontier is to determine how processed information can be fed back into the brain to
guide and adapt neural activity.

Research B: Bidirectional Feedback and Adaptive Modulation

Bidirectional feedback and adaptive modulation represent a shift in human—-machine interaction
from static interpretation to dynamic, co-evolving engagement. In contrast to open-loop models
that extract neural information without further interaction, bidirectional systems return feedback to
the user and modify their internal state based on the user’s neural response. This feedback may be
implicit or explicit, sensory or cognitive, but its function is always regulatory. It allows the system
to adjust its operation in response to the user’s changing goals, mental states, or neural patterns,
thereby maintaining alignment over time.

A striking example of implicit feedback is reported by Liu et al. (2025), who developed a
memristor-based neuromorphic decoder capable of both real-time inference and adaptive updates.
The system detects error-related potentials as neural feedback, using them to update the decoder
during ongoing interaction. Over six hours of continuous use with ten participants, the co-

evolution of brain signals and the decoder yielded an average 20% improvement in accuracy, with
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both neural patterns and decoder maps progressively converging. This demonstrates a hardware-
level realization of adaptive feedback, in which biological and artificial components jointly evolve
through continuous modulation.

Further evidence of automatic feedback processes comes from closed-loop neuromodulation
studies. By monitoring brain activity and delivering targeted stimulation in response to detected
anomalies, such systems have been shown to refine motor control and enhance cognitive function
through reinforcement of plasticity and improved signaling efficiency (Jin et al., 2024; Ros et al.,
2014). These approaches exemplify how BAIs can intervene directly at the neural circuit level,
providing stability and functional gains without requiring conscious effort from the user.

Taken together, these findings suggest that implicit and automatic forms of feedback may
be particularly suited to individuals with BIF. By progressively stabilizing neural dynamics and
adapting system parameters in real-time, such mechanisms can create a supportive environment in

which the brain and artificial agents co-evolve, sustaining reliable performance with minimal user

burden.

Integrated Outlook

Integrating these domains is likely to be essential for advancing BAI systems. Building on this
integration, Fig. 2 illustrates a conceptual closed-loop architecture in which neural signals
representing the brain’s electrical activity and reflecting user intentions are dynamically combined
with external instructions that provide contextual task guidance. At each time step t, the decoder
D, (thec) receives the neuronal signal n, and the external stimulus or instruction IN, as inputs
and produces an intermediate representation h, . The execution module E, (Qexe) maps h, into a
control signal ¢, , which induces the observed performance p,.The deviation J, = p, —;/): is
computed by comparing p, with the expected performance ;/); .The loss L, =g(&,) is calculated
within the adaptive feedback unit and used to update the parameters of both the decoder and the
execution module.

IN;
[ Decoder Dt(egi“)]-.\_ dec ommmeter

T YL update
. “{ Adaptive

re e

{ Execution Module E; (67 )} 5= Faatiback L;

t+1 update :
Ct J,
Observed
[ Performance p J g(ét)

v

{ Deviation &; = p; — Py }

Solid line: execution

,,,,,,,,,,,,,,,,,,,, Dotted line: learning and correction

Fig. 2. Hypothetical closed-loop model integrating neuronal signals and external instructions for adaptive
task execution. Symbols correspond to those defined in the main text.
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Through this closed-loop process, the system continually refines its decoding and execution
modules in real-time, achieving co-adaptive integration between neural interpretation and stimulus-
driven task performance.

Within this framework, neural activity that encodes user intent is systematically merged with
contextual guidance to direct task execution through a process of iterative self-optimization.
By comparing ongoing performance with expected results, the system incrementally adjusts
its internal parameters, leading to progressive improvements in responsiveness, efficiency, and
alignment with user needs. As these processes evolve, such co-adaptive learning is expected to
facilitate the transition from discrete modular pipelines to holistic, co-evolving architectures that
engage dynamically with the brain. Ultimately, these architectures may enable personalized closed-
loop systems that support executive functions, enhance the performance of complex tasks, and
promote fuller participation in cognitively demanding environments. Over time, this developmental
trajectory may help transform individuals with BIF into CAWs capable of sustained and adaptive

performance in dynamic settings.

Customization for Individual Needs
No two individuals with BIF exhibit identical cognitive profiles; therefore, it is necessary to tailor

the Al assistant to each user (Jankowska et al., 2021). This variability is rooted in stable trait-level
differences that shape how each person processes information and engages with tasks. For instance,
one individual may show marked difficulties with reading comprehension, struggling to extract
meaning from written text, whereas another may have particular limitations in mental arithmetic,
finding it challenging to retain numerical information or manipulate quantities in working memory
(Jankowska et al., 2021). Others may present uneven profiles in which certain executive functions,
such as planning, organization, or inhibitory control, are disproportionately affected relative to
overall cognitive ability.

Such heterogeneity means that a uniform design is insufficient. Instead, the Al must be
capable of mapping these distinctive profiles and aligning its assistance accordingly. For a user
with language-related difficulties, the system might rely more heavily on visual cues, simplified
instructions, or multimodal presentation of information. By contrast, for a user with mathematical
weaknesses, the system could provide stepwise scaffolding for numerical operations, frequent
prompts for verification, or tools that externalize memory demands. In both cases, the Als
interaction style, including the type of cues, the frequency of feedback, and the level of detail, is
adjusted to match the user’s enduring cognitive characteristics.

This approach does more than enhance task performance; it also seeks to preserve each
individual’s unique identity. By adapting to enduring cognitive traits rather than overriding them,
the BAI supports the person as they are, helping them participate more fully without erasing
the distinctive ways in which they process and experience the world. Trait-level customization,
therefore, serves as both a practical necessity and an ethical commitment to respecting individuality

within augmentation.

Workplace Integration and Adaptations
Alongside ongoing technological development, it remains essential to integrate BAI into actual
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work environments (Gonfalonieri, 2020). With the ongoing evolution of BCI technologies, their
integration may progressively require the careful design of jobs and workflows to accommodate
CAWs, along with adjustments to training processes. This process can follow three operational steps: (1)
Task analysis, in which existing jobs are broken down into discrete tasks to identify requirements and
constraints; (2) Selection of CAWs-compatible tasks, focusing on activities most likely to benefit from
Al-supported cognitive augmentation; and (3) application programming interface (API) integration,
in which task-specific instructions and manuals are made accessible through interfaces that enable Al
to retrieve information from company databases and deliver it directly to workers.

To ensure smooth deployment in real-world settings, the underlying neurotechnology must
also adapt to dynamic workplace environments. While reliable BCI use has traditionally depended
on periodic calibration and designated quiet zones (Chavarriaga et al., 2017; Rashid et al., 2020),
next-generation systems are expected to leverage real-time artifact removal algorithms (Schmoigl-
Tonis et al., 2023). Recent progress in short and zero-calibration EEG techniques (Ko et al., 2021),
alongside motion-tolerant wearable systems (Casson, 2019), suggests that such platforms may
eventually operate robustly in more naturalistic, noise-prone work environments.

Just as awareness campaigns have long played a critical role in reducing stigma and fostering
understanding of individuals with disabilities (Scior et al., 2020), it is equally important to
cultivate informed and nuanced awareness of the capabilities and limitations of CAWs. Such
awareness among managers and colleagues can help foster an inclusive team environment and
mitigate misconceptions about how CAWs interact with conventional workflows. Additionally,
pilot programs across various industries, such as manufacturing and office data entry, should be
carefully developed and implemented. These programs will enable systematic evaluation of CAW
effectiveness in practical settings and help identify the types of workplace accommodations needed

to support both their performance and integration.

SOCIOECONOMIC TRANSFORMATION OF INDIVIDUALS WITH
BORDERLINE INTELLECTUAL FUNCTIONING (BIF) INTO COG-
NITIVELY AUGMENTED WORKERS (CAWs)

Individuals with BIF are primarily restricted to low-skilled labor positions (Emerson et al., 2018;
Peltopuro et al., 2023). Targeted cognitive augmentation through Al-driven systems could support their
transition into more stable forms of employment and facilitate access to regular income. As a result,

such developments may significantly enhance their financial independence and long-term security.

From Margins to Meaning: Cognitive Augmentation and the Recovery of

Self-Worth in Individuals with Borderline Intellectual Functioning (BIF)
The primary rationale for enabling individuals with BIF to work as CAWs through BAI is

economic stabilization, as structured employment can provide regular income and support long-
term financial independence (Peltopuro et al., 2023). Beyond this, however, there are important
psychosocial effects that follow from sustained workplace participation. Individuals with BIF face
elevated risks of anxiety and depressive symptoms, often associated with social isolation, diminished
self-worth, and exclusion from education or employment (Hassiotis et al., 2019; Peltopuro et al.,
2023). Engagement as CAWs can mitigate these difficulties by creating structured opportunities
to contribute in visible and meaningful ways, thereby enhancing self-esteem and fostering a
stronger sense of purpose. Research consistently shows that employment is linked not only to
material security but also to improved mental health and greater life satisfaction, a pattern also
evident among those with cognitive or intellectual impairments (Emerson et al., 2018). Moreover,
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inclusive and collaborative workplaces can strengthen interpersonal connections, promote a sense
of belonging, and gradually reduce stigma as coworkers gain sustained exposure to CAWs in
functional roles (Peltopuro et al., 2023). Taken together, while economic stability remains the central
driver, these additional psychosocial gains highlight the broader value of BAI-enabled employment
for long-term wellbeing and social integration.

Macroeconomic Impact of Integrating Cognitively Augmented Workers

(CAWSs): From Labor Expansion to Fiscal Contribution
For modeling purposes, all numerical results are presented as final values rounded to the second

decimal place, with intermediate calculations performed using the original unrounded figures to
ensure accuracy. The share of individuals with BIF in the total population is fixed at py, =0.136

(Peltopuro et al., 2023). The integration ratio (a) represents the proportion of the population of
individuals with BIF equipped with BAI systems who are successfully integrated into the workforce
as CAWs, while the relative productivity ratio (/) denotes the average productivity of CAWs as a
fraction of the general workforce’s productivity. The gross domestic product (GDP) elasticity
coefficient (6’) reflects the percentage change in GDP associated with a 1% change in the labor
supply, and is set at & €[0.43,0.48] based on empirical studies of advanced economies (Haider et
al., 2023).

Combining these elements, the macroeconomic effect can be expressed in closed form as:
%AGDP = (100X 0% Py X P age ) 2B 3)

Where p
For sensitivity analysis, two demographic cases are considered: p
x €[3.51,3.92]) and p,
multiplier preceding a3 .

working-age 15 the share of the population in the working-age bracket.

working-age — 0.60 (yleldmg
=0.70 (yielding Ke[4.09,4.57] ), where & is the composite

working—age

Baseline Scenario
Assuming & =0.30 and f=0.5,we obtain aff =0.15.

* For pwork/'ng—age =0.60:
%AGDP =[3.51,3.92]x0.15 = 0.53% to 0.59%
. For pworking—age = 070 :

%AGDP =[4.09,4.57]x0.15=> 0.61% to 0.69%

Thus, under conservative assumptions, CAW integration could expand GDP by approximately
0.53% to 0.69%.

Optimistic Scenario
Assuming o =0.70 and S =0.80,we obtain 3 =0.56.

* For pwarking—age =0.60:
%AGDP =[3.51,3.92]x0.56 = 1.96% to 2.19%
* For pwork/'ng—age =0.70:

%AGDP =[4.09,4.57]x 0.56 = 2.29% to 2.56%

'This scenario illustrates the substantial potential GDP gains that can be achieved if integration
rates and relative productivity improve through technological refinement, workplace adaptation, and

the broader adoption of CAWs.
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Interpretation and Implications

While these projections necessarily abstract from real-world complexities such as device acquisition
and maintenance costs, training and retraining investments, sector-specific productivity differentials,
and institutional capacity constraints, they nevertheless underscore the macroeconomic potential of
inclusive Al-enabled employment strategies. At a sufficient scale, higher participation of CAWs in the
labor market could contribute not only to GDP growth but also to easing fiscal pressures on healthcare,
disability support, and other social service systems, while advancing broader social inclusion goals.

Beyond their role in increasing aggregate output, CAWs integrated into formal employment
structures could transition from being net recipients of public resources to becoming net
contributors to public revenues. This shift would occur through income taxation, social security
contributions, and indirect taxation, achieved through increased consumption. Such a transition
would represent a significant repositioning for individuals with BIF, both economically and socially,
by reframing them as active economic agents whose contributions reinforce fiscal sustainability.

In summary, the integration of CAWs into the workforce holds the potential to enhance
economic resilience by expanding productive capacity, stimulating domestic demand, and
broadening the fiscal base. The magnitude of these benefits will ultimately depend on the quality
of program design, the scalability of supporting infrastructure, and the extent to which workplace

environments and management practices are adapted to maximize CAW effectiveness.

COGNITIVELY AUGMENTED WORKERS (CAWs) VS. ROBOTICS

When deploying CAWs in the workforce, one essential consideration is the strategic balance
between human enhancement and the increasing reliance on robotic or Al-driven automation.
This question is particularly salient in sectors dominated by routine or low-skilled labor, where
technological substitution and augmentation may present overlapping possibilities. A critical
decision thus lies in choosing between investing in CAWs and pursuing full automation to address
labor shortages and efficiency demands.

While robotic and Al-based systems are often promoted as comprehensive solutions to
productivity gaps, complete automation frequently entails substantial financial investment and
technical complexity (Campilho & Silva, 2023). Moreover, for tasks that require contextual
judgment, adaptability, and nuanced decision-making, the marginal returns from full automation
may be constrained (Manyika et al., 2017). By contrast, combining human labor with forms of
automation short of full automation provides a more adaptable and potentially cost-efficient
alternative to exclusive reliance on full automation (Nguyen & Elbanna, 2025). This approach
can capitalize on the inherent adaptability of human workers, an asset that even sophisticated

autonomous systems may struggle to replicate.

Robotics vs. Cognitively Augmented Workers (CAWs): Cost Considerations
Although both humanoid robotics and BAI systems are regarded as potentially transformative

technologies for augmenting human labor, it is not yet possible at the current stage of development
to establish a clear cost efficiency advantage for either approach. Commercially available humanoid
robots designed for applications such as elder care, logistics, and hospitality vary widely in price,
ranging from approximately USD 30,000 to over USD 100,000, depending on factors such as
customization, durability, and functional capability (Qviro, 2024). In contrast, the current estimated
cost of implementing a BCI-based system, which includes BAI prototypes, is centered around USD
50,000. This cost is primarily driven by the implantable device itself and the specialized personnel
training required to ensure safety and effectiveness (UNILAD, 2025). Elon Musk has suggested
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that future mass production could reduce BCI costs to levels comparable to those of consumer
electronics, such as smartwatches (Benzinga, 2024), although such projections remain speculative.

Each technology involves a unique and complex cost structure. Humanoid robots require not
only hardware acquisition but also long-term expenses for maintenance, energy consumption,
and software updates. BAI systems require surgical implantation, ongoing clinical oversight, and
long-term biocompatibility management, each of which introduces medical risk and uncertainty
regarding long-term sustainability. Furthermore, robotics benefits from relatively mature production
pipelines and an expanding number of commercial deployments, whereas BAI remains at an early
prototypical stage with limited large-scale clinical applications.

At present, neither peer-reviewed studies nor official government or intergovernmental statistics
provide directly comparable total cost of ownership (TCO) data for humanoid robotics and CAW
configurations operating under equivalent specifications in the same period. In the absence of high-
reliability data, this analysis has necessarily relied on grey literature sources, including industry
reports, corporate announcements, specialized blogs, and media articles, to obtain preliminary
insight into market trends and cost structures. Although such sources can offer useful indicative
information, they often lack methodological transparency and representative sampling. The price
ranges cited above are therefore drawn from grey literature and should be regarded as indicative
rather than definitive values.

Conceptual Framework for Total Cost of Ownership (TCO)-Based Comparison

Given these limitations in obtaining robust and directly comparable cost data, the present
study adopts a conceptual TCO framework as a structured approach for assessing both humanoid
robotics and CAW configurations under equivalent performance specifications. This framework,
which applies across the full operational lifecycle, organizes cost considerations into four principal
categories: acquisition, operation, upgrade and maintenance, and end-of-life and disposal. For
humanoid robotics, these categories encompass factors such as equipment purchase, installation,
maintenance, energy consumption, and decommissioning. For CAWs, they include device
procurement, surgical implantation, clinical oversight, software updates, and device removal. Each

category reflects distinct cost drivers and variability factors, as summarized in Table 1.

Cognitively Augmented Workers (CAWs) and Emotionally Responsive Labor

CAWs may offer advantages in labor settings where emotional intelligence and contextual
sensitivity are essential. Unlike robots, which operate through fixed algorithms, CAWs may retain
the human ability to perceive and respond to emotional nuance. When assisted by Al tools that
support memory, attention, and emotional regulation, they might engage more effectively in roles
that require empathy and interpersonal awareness.

Caregiving provides a clear example. Fields such as elder care, disability support, and mental
health services involve relational tasks that extend beyond physical assistance. While robots can
support routine activities, they may lack the capacity to recognize distress, convey emotional
warmth, or adjust their behavior in response to subtle cues. CAWs, by contrast, might combine
their human sensitivity with Al-supported consistency, allowing them to respond more naturally
and adaptively in emotionally charged situations.

Similar expectations arise in service roles such as hospitality, food service, and customer
interaction. These sectors rely not only on functional efficiency but also on trust, intuition, and social
presence. Customers often expect authentic engagement, something that automated systems may
struggle to replicate. CAWs could meet these needs by integrating their interpersonal capacities
with Al-guided responsiveness, offering a blend of emotional intelligence and operational reliability.
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Table 1. Principal categories for total cost of ownership (TCO) assessment

TCO category Humanoid robotics CAWs
Acquisition Equipment purchase, installation, Device cost, medical implantation, and
a integration, and initial training. training for the user and operator.
Routine maintenance, energy and Clinical oversight, software
Operation consumables, and software licensing/  updates, and safety/environmental
subscriptions. management.
: Hardware module replacements and  Firmware updates and biocompatibility
Upgrade and maintenance software updates. interventions.
. ; Decommissioning, secure data Device removal surgery, data deletion,
End of life and disposal deletion, and recycling/disposal. rehabilitation, and re-implantation.

Typical operational lifespan assuming ~ Typical operational lifespan based on

Expected lifecycle standard usage conditions. current device replacement cycles.

Surgical advances, device
miniaturization, and long-term
biocompatibility.

Manufacturing scale, supply chain

Key cost variability factors gy it “and energy price changes.

The TCO categories presented here capture the principal cost drivers across the full lifecycle of each technology, from acquisition to
end-of-life, and highlight the distinct factors influencing cost variability for humanoid robotics versus CAWs.
CAWs, cognitively augmented workers.

The implications of this model may extend beyond individual workplaces. Many economies
are experiencing persistent labor shortages in essential yet cognitively manageable sectors (Alam,

2022; Bailey, 2022; OECD, 2019). These roles demand adaptability but do not necessarily require
advanced academic training. CAWs might offer a viable response to such gaps.

Cognitively Augmented Workers (CAWs) and the Dual Role of Economic
Agency

While robots are highly effective at enhancing productivity within production systems, they
lack the capacity to engage in consumption. This fundamental limitation excludes them from
participating in the broader production—consumption cycle, thereby restricting their ability to
contribute to sustained economic dynamism (Jungmittag & Pesole, 2019). Robotic systems do not
possess purchasing power, nor do they generate demand for goods and services. As a result, their
integration, while beneficial for operational efficiency, does not inherently stimulate downstream
economic activity.

In contrast, CAWs can serve as both producers and consumers within the economic ecosystem.
Their dual role enables them to contribute not only through labor but also through market
participation. By earning income and engaging in consumption, CAWs may help sustain the
cyclical flow of value that underpins economic vitality (King, 2022). This integration fosters a
more dynamic and inclusive economic model, where technological augmentation enhances human
agency rather than replacing it. In doing so, CAWs can support not only labor market resilience
but also aggregate demand, thereby reinforcing the structural sustainability of growth-oriented
economies (King, 2022).

Complementary Roles in a Diversified Technological Ecosystem

Although CAWs and robotic systems may compete in certain domains, it is more accurate to
view them as complementary technologies, each suited to specific operational contexts. Robots
are particularly effective in highly standardized, repetitive, or hazardous environments where
consistency and mechanical precision are paramount. CAWs, on the other hand, are better
positioned to operate in settings that demand adaptability, human judgment, or social interaction.
Rather than seeking a single dominant solution, a diversified labor strategy can integrate both

approaches according to the demands of each task.
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ETHICAL, LEGAL, AND POLICY CONSIDERATIONS FOR
COGNITIVELY AUGMENTED WORKERS (CAWs)

'The transformation of individuals with BIF into CAWs should be guided by robust ethical and
legal frameworks designed to protect their rights and well-being.

Safeguarding Consent and Cognitive Autonomy

Ensuring informed consent is a critical element. Any implantation or use of BAI should be
entirely voluntary and based on a clear understanding of its potential risks and benefits. Prospective
CAWs and their guardians, where applicable, must receive transparent information regarding the
device’s intended function, the data it may collect, and any potential cognitive or health side effects.
It is essential that no individual be coerced, directly or indirectly, into receiving a brain implant as a
condition of employment. Therefore, labor regulations should prohibit employers from mandating
BAI use and require that such technology be offered as an opt-in assistive tool similar to a
prosthetic limb, with the objective of empowering rather than exploiting individuals (Dickey, 2024;
Kim, 2023; Yuste et al., 2017).

A BAI inherently interacts with an individual’s thought processes and thus raises considerable
concerns regarding potential unauthorized access and unintended influences on neural signals by
employers or Al providers (Dickey, 2024; Kim, 2023; Yuste et al., 2017). Research on neuroethical
challenges and emerging legal frameworks suggests that inadvertent access, where neural signals not
intended for work tasks may be compromised, has the potential to compromise both worker privacy
and mental autonomy (Dickey, 2024). In accordance with established workplace privacy principles
(Office of the Privacy Commissioner of Canada, 2023), the default ownership of neural data should
reside with the individual, and any access by employers should be strictly limited and regulated.
Furthermore, policies should ensure that BAI systems function solely as closed-loop cognitive aids
under the user’s control, thereby helping to prevent unauthorized monitoring or manipulation
of neural activity. Users must also retain an immediate pause control and an audited kill switch
pathway that reverts to non-augmented operation without penalizing employment status, ensuring
that disengagement remains a protected right rather than a source of professional disadvantage.

To further protect the integrity of personal thought processes, robust safeguards such as data
encryption, anonymization during Al processing, and independent oversight of BAI algorithms
should be implemented. Fig. 3 illustrates the proposed ‘Neural Data Governance StacK, a layered
framework that delineates the principles of user ownership, access control, secure processing, and
compliance monitoring. Each layer integrates technical mechanisms with governance practices
to safeguard mental autonomy and ensure the privacy of neural data in BAI-enabled systems. By
aligning technical protections with enforceable rights and oversight, this model operationalizes

ethical and legal safeguards in a way that preserves security, transparency, and user-centered control.

Legal Protections and Liability Frameworks
From a legal standpoint, it is essential to revise existing disability and labor laws, such as the

Americans with Disabilities Act Amendments Act (ADA), to ensure stronger protections for
individuals who rely on assistive technologies. CAWs may not be regarded as “disabled” in the
traditional sense because the technology compensates for their impairments; however, under current
law, such as the ADA, if an individual has a fundamental impairment, they remain eligible for legal
protection (ADA, 2008). This situation creates a legal gray area that warrants careful consideration
of the definition of disability under the ADA interpretations. Lawmakers should ensure that
CAWs are protected against discrimination. For instance, employers should not be permitted
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to refuse to hire an individual solely because that person requires a BAI device. Such protection
would be analogous to that afforded to individuals who use wheelchairs or hearing aids (California
Department of Justice, n.d.). Additionally, employers should provide reasonable accommodations
for BAI use in a manner consistent with their practices for other assistive devices (California
Department of Justice, n.d.). Furthermore, workplace safety and insurance raise additional
challenges. For example, suppose a BAI device malfunctions or contributes to an on-the-job health
issue, such as triggering a seizure or causing cognitive overload. In that case, clear policies must
be established to assign liability. Although direct legal precedent for BAI devices may be limited,
analogous principles from defective machinery suggest that, for example, Occupational Safety
and Health Administration (OSHA) regulations require employers to maintain safe equipment,
and manufacturers are held liable under product liability principles as articulated in Restatement
(Second) of Torts §402A (American Law Institute, 1965-1977); accordingly, in cases of negligence
liability might be shared by device manufacturers.

Toward an Ethical and Inclusive Policy Framework
Policy recommendations to foster the ethical deployment of BAI devices should begin with

the establishment of robust certification and testing guidelines. For example, adopting a regulatory
process similar to that of the Food and Drug Administration (FDA) for neurotechnology
aimed at augmentation may help ensure both safety and efficacy prior to a wide-scale rollout
(FDA, 2021). In parallel, governments may consider implementing financial support or funding
programs modeled on existing provisions for assistive technologies in order to broaden access for
those who could genuinely benefit (ACL, 2024). International labor organizations (ILO) may
contribute by issuing comprehensive standards for integrating neurotechnology in the workplace
with an emphasis on human rights, worker safety, and inclusivity. However, ILO standards may

not explicitly address the involvement of specific stakeholder groups. Therefore, it is essential that

Neural Data Governance Stack

Oversight & Compliance Layer

Independent oversight, legal and ethical compliance, and audit reporting

Processing Layer

Encrypted processing and anonymization during Al analysis

Access Control Layer

Role-based access, access logs, and real-time monitoring

User Ownership Layer

Users retain ownership and grant explicit consent for access.

Fig. 3. Neural data governance stack. This layered framework delineates the principles of user ownership,
access control, secure processing, and independent oversight. Each layer integrates technical
mechanisms with governance practices to safeguard mental autonomy and ensure the privacy of neural
data in BAl-enabled systems. By defining the interplay among ownership rights, access permissions,
encryption protocols, and independent compliance oversight, the model translates ethical and legal
safeguards into an operational structure that keeps cognitive augmentation secure, transparent, and
centered on the user. Conceptually informed by prior work on Al ethics and neurodata governance (Yuste
et al., 2017; High-Level Expert Group on Artificial Intelligence, 2019)
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policymaking actively involve representatives from affected communities, such as disability rights
advocates, neuroethics experts, and other relevant stakeholders, to inform the necessary protections
and considerations. Ultimately, safeguarding mental autonomy and individual dignity remains
a core ethical imperative as enshrined in the Universal Declaration of Human Rights (1948). A
BAI device should be regarded as an empowering tool, similar to an exoskeleton that aids mobility,
rather than as a mechanism for employers or technology providers to exert undue control or
harvest brain data. With thoughtful safeguards in place, BAI systems can be integrated in ways
that respect and empower users. First, adopting Privacy by Design principles from the outset
ensures that user data and mental privacy are protected (Information and Privacy Commissioner of
Ontario, n.d.). Additionally, users should retain the ability to pause or disengage the device at will,
and independent ethics oversight bodies could monitor and audit BAI deployments. Proactively
establishing the necessary legal framework is essential to avoid potential future pitfalls and to help

fulfill the promise of inclusive augmentation.

MAPPING THE PATH OF COGNITIVE AUGMENTATION: PROPO-
SITIONS, MEDIATORS, AND BOUNDARY CONDITIONS IN COG-
NITIVELY AUGMENTED WORKER (CAW) INTEGRATION

Conceptual Overview: From Brain-Artificial Intelligence Interface

(BAI) to Economic Impact
The proposed framework outlines a four-stage causal pathway through which BAI may

influence macroeconomic dynamics by first enhancing the cognitive capacity of individuals with
BIF. It begins with the adoption of BAI, which leads to cognitive enhancement, followed by
improved job performance, greater employment stability, wage progression, and ultimately broader
economic effects. Each link in this sequence is examined using three conceptual tools: mediators,
which clarify the underlying mechanisms; boundary conditions, which define when and for whom
the effects may vary; and propositions, which guide empirical investigation. As summarized in
Table 2 and visually depicted in Fig. 4, these elements collectively outline the logical structure of the
framework and the hypothesized flow from neurocognitive change to macroeconomic outcomes.
The parameters (scope and target population) and preconditions (institutional and technical
requirements for implementation) of the framework have been specified in the preceding sections.
They are treated as given in the present analysis. This structure promotes both analytical clarity
and empirical testability. While the framework provides a theoretically grounded model for
understanding these interlinked mechanisms, the operationalization and empirical validation of its
components are beyond the scope of this paper. Future empirical studies are planned to test these

causal pathways using methodologies such as randomized controlled trials, quasi-experiments, and

CGE.

Stage-by-Stage Causal Model
As summarized in Table 2, the causal pathway begins with BAI adoption leading to cognitive

enhancement. The following section elaborates on each proposition in detail, clarifying the

mechanisms, mediating factors, and boundary conditions that shape the expected outcomes.

Stage 1: BAl Adoption — Cognitive Enhancement

Proposition 1 (P1): If BAI adoption increases working memory capacity in individuals with
BIF, then task accuracy and sustained focus will measurably improve.
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Table 2. Summary of propositions across the four-stage causal model

, A Boundary Expected
Stage Proposition Mediators conditions outcome
Stage 1 P1: If BAl adoption increases M1: Speed of neural  B1: Long-term Enhanced
BAI working memory capacity, adaptation biocompatibility working
then task accuracy and M2: Degree of B2: Hardware memory
Cognition sustained focus will personalization durability in daily use
measurably improve.
Stage 2 P2: If coaching and response  M3: Frequency of Al B3: Task type (routine Better task
Cognition latency are optimized, job coaching vs. creative) performance
l performance in complex M4: BAI response
Performance  environments will improve. latency
Stage 3 P3: If culture and job design ~ M5: Organizational B4: Labor elasticity; ~ Higher
Performance  are supportive, retention and  acceptance how easily firms retention and
l wages rise. M6: Task redesign adjust workforce pay
Employment size in response to
demand (sectoral)
Stage 4 P4: If macro conditions M7: Real wage B5: Macroeconomic ~ GDP growth
Employment  are favorable, labor gains increase climate and fiscal
l contribute to GDP and fiscal ~ M8: Tax revenue and balance
Economy growth. transfer shifts

This table summarizes the causal progression from neurocognitive change to macroeconomic outcomes, specifying mediators and
boundary conditions at each stage. Detailed interpretations for each proposition are elaborated in the subsequent ‘Stage-by-Stage
Causal Model section’, which provides expanded discussion, contextual analysis, and practical implications.

P=Proposition: A concise, testable statement linking specified conditions to expected outcomes. Each proposition represents a hy-
pothesis that can be empirically examined to assess causal relationships.

M=Mediator: An intervening variable that explains the mechanism through which the proposition operates. Mediators provide insight
into the pathways and processes that connect conditions to outcomes, enabling more precise theoretical modeling.

B=Boundary Condition: A contextual factor that defines the circumstances under which a proposition remains valid or is applicable.
These conditions determine the scope and applicability of the propositions across contexts, ensuring that findings are interpreted
and applied with situational relevance.

The downward arrows (|) indicate the directional flow of causality across the four sequential stages in the model: Stage 1 — BAI to
Cognition, Stage 2 — Cognition to Performance, Stage 3 — Performance to Employment, and Stage 4 — Employment to Economy.
This four-stage causal model is designed to integrate micro-level cognitive mechanisms with macro-level socioeconomic outcomes.
Each stage builds on the preceding one, creating a cumulative pathway from individual neural adaptation and performance improve-
ment to workforce integration and, ultimately, national economic impact.

While the propositions are presented in a linear sequence, the model acknowledges potential feedback effects between stages in
practical applications. However, for analytical clarity, such bidirectional effects are not depicted in this summary table.

Al artificial intelligence; BAI, brain—artificial intelligence interfaces; GDP, gross domestic product.

This proposition captures the first stage of transformation, where BAI functions as a high-
frequency, closed-loop cognitive prosthesis. Its effectiveness hinges on the brain’s capacity for rapid

adaptation and the system’s ability to deliver highly personalized feedback in real-time.

- Mediators

- M1: Speed of neural adaptation

- M2: Degree of personalization in Al-generated feedback
* Boundary conditions

- B1: Long-term biocompatibility of neural interfaces

- B2: Durability and usability under daily conditions

Interpretation: The integration of BAI can enhance working memory, enabling higher task
accuracy and sustained focus in cognitively demanding roles. Such gains reduce cognitive load,
optimize neural processing efficiency, and free up resources for complex reasoning and decision-
making. These benefits can extend to fields requiring precise procedural execution and adaptive

collaboration, such as advanced technical operations and coordinated team-based tasks.
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BAI Adoption
1T M1, M2
| B1,B2
P1

2

Cognitive Enhancement
T M3, M4
l B3
P2

¥

Job Performance
t M5, M6
| B4
P3

i

Employment & Wages
1 M7, M8
1 B5

P4
Macroeconomic
Outcomes

Fig. 4. Visual representation of propositions, mediators, and boundary conditions for cognitively
augmented worker (CAW) integration. Fig. 4 complements Table 2 by providing a visual representation of the
four-stage causal pathway from BAI adoption to macroeconomic outcomes. Boxes indicate sequential stages,
arrows denote causal direction, and propositions (P1-P4) specify the hypothesized links. ltems marked with 1 (M)
represent mediators that enable or amplify effects, whereas items marked with | (B) indicate boundary conditions
that constrain them. BAI, brain—artificial intelligence interfaces.

Stage 2: Cognitive Enhancement — Job Performance Improvement

Proposition 2 (P2): If coaching frequency and system response latency are optimized, overall job
performance in terms of accuracy, speed, and efficiency is expected to improve in complex work

environments.

'This proposition extends the first wave of enhancement into the workplace. Real-time, context-

aware feedback from BAI enables users to reduce cognitive load and errors during task execution.

- Mediators

- M3: Frequency of Al coaching

- M4: Response speed of the BAI system to user-initiated queries
* Boundary conditions

- B3: Nature of the task (e.g., routine vs. creative or volatile)

Interpretation: Cognitive improvements fostered by BAI can result in lower error rates, faster
completion of multi-step assignments, and more consistent efficiency across task types. These
effects are amplified in roles that combine procedural rigor with situational judgment. At the
organizational level, the outcomes include reduced quality-control overhead, increased throughput,

and enhanced workplace safety, enabling a more strategic and flexible allocation of human capital.

https://www.mechecology.org | 17



Transforming Individuals with Borderline Intellectual Functioning into Cognitively Augmented Workers M ec h ECO logy

https://doi.org/10.23104/ME.e8

Stage 3: Job Performance — Employment Retention and Wage Growth

Proposition 3 (P3): If organizational culture and job design are supportive, CAWs will sustain
job performance that leads to higher retention and, over time, rising real wages.

'This proposition captures the organizational and structural contingencies of augmentation. Even
if BAI makes individuals more effective, labor outcomes depend on whether the institution values

augmented capabilities and can adapt tasks accordingly.

- Mediators
- M5: Organizational acceptance of cognitive augmentation
- M6: Extent of task redesign to leverage BAI advantages
* Boundary conditions
- B4: Sectoral labor elasticity (i.e., how easily firms adjust workforce size in response to demand)

Interpretation: Sustained improvements in job performance can enhance both employment stability
and wage growth, provided that organizations recognize and reward augmented capabilities. For
individuals with BIF, who often face high turnover and insecure employment, continuous BAI support
can strengthen job fit, foster long-term retention, and create opportunities for gradual improvements in

compensation. This dual outcome reduces organizational costs related to retraining and reassignment.

Stage 4: Employment and Wages — Macroeconomic Outcomes

Proposition 4 (P4): Stable labor market participation by CAWs will generate positive
macroeconomic effects, including GDP growth, higher tax revenues, and reduced welfare
spending.

This final stage links micro-level labor improvements to national-level economic dynamics.

Fiscal and growth effects are contingent on the economic cycle and policy environment.

* Mediators

- M7: Real wage increases across CAWs

- MB8: Shifts in tax revenue and social transfer payments
* Boundary conditions

- B5: Macroeconomic climate (e.g., expansion vs. recession)

Interpretation: A stable cohort of CAWSs can boost labor market participation rates and raise
income levels. These micro-level effects can aggregate into macroeconomic gains such as GDP

growth, increased tax revenues, and reduced welfare expenditures.

Empirical Research Design Guided by Propositions

To support the empirical validation of the proposed conceptual framework, each proposition
is matched with a methodologically appropriate research design. The mapping below illustrates
how distinct methodological approaches can be aligned with each stage of the causal pathway,
from individual cognitive enhancement to macroeconomic outcomes. Table 2 and Fig. 4 together
provide complementary perspectives on this conceptual sequence: Table 2 presents the sequential
stages in tabular form, while Fig. 4 visually depicts the causal linkages and mediating factors across
these stages. Table 3 then outlines how each component can be translated into a concrete empirical
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strategy. This structure is intended not as an exhaustive implementation plan, but as a high-level
roadmap to guide future empirical work.

For clarity, each proposition in Table 3 is defined according to its specific measurement criteria.
Working memory (P1) is measured as a composite score obtained by averaging the standardized
(z-score) results from 2-back and 3-back tasks, both of which assess the ability to hold and update
information over short time intervals. Task performance (P2) is evaluated by calculating errors per
unit of time, providing an efficiency-adjusted measure of accuracy. Retention (P3) is assessed as the
proportion of participants maintaining their role over 12 months, reflecting sustained functional
integration. Macroeconomic outcomes (P4) are quantified using computable general equilibrium
(CGE) simulations to estimate changes in gross domestic product (AGDP) and fiscal balance,
thereby linking individual-level impacts to broader economic indicators.

Implications for Policy Design

The propositional causal model presented above offers a structured yet adaptable foundation
for designing policies that support the integration of CAWs through the use of BAI Rather than
functioning as a rigid framework, it enables policy actors to engage with the process of augmentation
in a manner that is context-sensitive, sector-specific, and responsive to economic fluctuations.

By clarifying the mediating variables that transmit effects from one stage to the next, the model
highlights key leverage points for targeted intervention. For instance, improvements in personalization
mechanisms or support for neural adaptation may be incentivized through public funding for
BAI research. Policies that promote job redesign in alignment with cognitive augmentation, such
as subsidies for Al-compatible workplace tools or retraining schemes, may further facilitate the
translation of individual cognitive gains into employment stability and wage progression.

Additionally, incorporating boundary conditions into the analysis supports more targeted and
effective policy responses. Sectors characterized by high labor elasticity may require stronger forms of
public intervention to mitigate unintended consequences such as job displacement or wage stagnation.
In contrast, sectors with more stable labor dynamics may respond positively to the gradual and
strategically phased implementation of BAL This capacity for tailored decision-making across sectors
reduces the risk of one-size-fits-all approaches that fail to account for structural variability.

At the macroeconomic level, the model also enables anticipation of broader fiscal and growth-

Table 3. Mapping of causal propositions to empirical strategies

Proposition Methodology Data source Measurable outcomes
P1 Randomized controlled trial  Experimental group vs. Composite working memory score
control (average standardized results

from 2-back and 3-back tasks),
attentional control measures, and
long-term durability markers

P2 Agent-based modeling and ~ Simulated environments and  Error rate per unit time and task
field study BAI users throughput (completion time
adjusted for accuracy)
P3 Quasi-experiment Organizational-level panel Proportion of participants retaining
(difference-in-differences) data their role over 12 months, wage
progression
P4 Computable general National economic data Change in GDP (AGDP) and fiscal
equilibrium simulation (CGE) balance from the CGE simulation

BAI, brain-artificial intelligence interfaces; GDP, gross domestic product.

These methodological approaches align with the causal logic of each proposition. Randomized controlled trials and longitudinal
cognitive testing are suited for assessing the neurocognitive outcomes in P1. Agent-based modeling combined with real-world
task data provides evidence for the interactional dynamics in P2. P3 requires organizational-level longitudinal data to isolate
employment effects of BAI adoption, while P4 uses macroeconomic modeling to capture aggregate fiscal and growth impacts.
Together, these methods form a multi-level empirical roadmap for validating the theoretical framework.
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related outcomes. When economic conditions are favorable, the productivity and wage effects
associated with CAWs may contribute to increased tax revenues and reduced welfare expenditures.
During periods of economic contraction, however, the same dynamics may require compensatory
policies to safeguard equity and preserve labor participation.

Opverall, this causal framework enhances the analytical and normative capacities of policy design.
It supports both predictive modeling and principled governance by showing when, where, and for
whom the benefits of CAW might be realized. In doing so, it establishes a more informed basis
for long-term strategies that promote inclusion, productivity, and fiscal sustainability in an age of

cognitive augmentation.

CONCLUSION

BAI may offer a promising opportunity to address the ongoing labor market challenges
experienced by individuals with BIF. By enabling two-way communication between neural systems
and Al, BAI may facilitate the transition of individuals with BIF into CAWs that can perform
tasks in more adaptive and skilled ways. In addressing these challenges, the present article offers
three interrelated contributions. First, it advances a closed-loop conceptual framework in which
co-adaptive BAIs support the transition of individuals with BIF into CAWs. Second, it provides
an illustrative macroeconomic model that estimates the potential impact of large-scale CAW
integration on GDP, tax revenues, and welfare expenditures. Third, it articulates an ethical, legal,
and policy architecture that includes neural data governance mechanisms and a four-stage causal
pathway to guide the safe and inclusive deployment of CAWs in real-world labor markets. This
innovation holds significant potential for enhancing employment outcomes for a population that
has historically faced high rates of unemployment.

'The potential benefits of this inclusive approach are considerable. It could enable individuals
to shift from long-term welfare dependence toward meaningful participation in the labor force.
This, in turn, is likely to support national productivity by increasing tax contributions and reducing
public expenditures, while also enhancing the quality of life for marginalized groups. Realizing
such outcomes will likely require a balanced and empirically grounded implementation strategy.
The framework presented under the heading ‘Mapping the Path of Cognitive Augmentation:
Propositions, Mediators, and Boundary Conditions in CAW Integration’ outlines a tentative four-
stage causal pathway, spanning BAI adoption, cognitive enhancement, improved task performance,
and broader macroeconomic implications. Each stage is shaped by mediating factors, such as the
personalization index and coaching frequency, and influenced by contextual boundary conditions,
including task complexity and labor demand elasticity.

'This proposed structure helps clarify both the mechanisms through which CAW integration
could unfold and the specific conditions under which its success may be more or less likely to occur.
'The propositions contained within the framework, from P1 to P4, provide testable hypotheses that
can inform future pilot programs, agent-based simulations, and longitudinal research. Incorporating
these empirical strategies into policy development may strengthen both the reliability and practical
relevance of future interventions aimed at supporting inclusive labor participation.

From a technological perspective, continued refinement and validation of BAI systems will
be crucial to ensure that they align with users’ cognitive needs in a safe and effective manner.
Economically, targeted investments in this domain would benefit from simulation evidence and
comparisons with similar inclusion efforts. On the ethical and legal fronts, it will be essential to
construct frameworks that uphold human agency and ensure that CAW integration advances

rather than undermines dignity. In pursuing these opportunities, it is also necessary to recognize
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potential limitations and risks. The estimates in this study rely on stylized elasticities and assumed
integration shares; real-world outcomes will depend on factors such as device safety, variations in
user characteristics, and the degree of organizational adaptation. If access is unequal, augmentation
could exacerbate existing disparities. These considerations emphasize the importance of phased pilot
programs, preregistered analytical protocols, and subsidy schemes designed to promote equitable
access.

In light of these possibilities, early-stage policy engagement would be timely. Governments
might consider updating labor regulations to account for the emergence of CAWs and offer
incentives for employers who adopt inclusive hiring practices. Public investment in cognitive
augmentation could eventually be considered alongside education and digital infrastructure as
a foundation for broader economic inclusion. To determine the practical viability of this model,
empirical research will be indispensable. This may involve pilot testing in real-world work
environments, simulation-based studies of CAW functionality, and longitudinal tracking of
cognitive and employment-related outcomes. Such efforts will be necessary to evaluate the validity
of the proposed causal model and to guide the refinement of implementation strategies.

BAI has the potential to offer a pathway to reconceiving cognitive limitations not as fixed
barriers, but as challenges that could be addressed through carefully guided innovation. If developed
and implemented responsibly, CAW integration could support a labor market in which no willing
individual is excluded on the basis of cognitive constraints. The transition from individuals with BIF
to CAW may serve as a model for expanding human capability and building a more inclusive and

adaptive society.

“What gives us worth is not simply reaching for the door. It is having the strength to open it and the

courage to step into something meaningful.”
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