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Abstract
Individuals with borderline intellectual functioning (BIF), defined by intelligence quotients (IQ) 
between 70 and 85, face persistent disadvantages in education, employment, and social 
participation. Brain–artificial intelligence interfaces (BAIs) are defined as AI–integrated, 
co-adaptive, closed-loop extensions of bidirectional brain–computer interfaces (BCIs) 
that decode neural signals and deliver context-aware feedback in real-time. Unlike open-
loop BCIs, BAIs enable continuous two-way interaction between the human brain and AI, 
providing adaptive support for working memory, attentional control, and procedural guidance. 
This paper analyzes the structural barriers affecting individuals with BIF and evaluates the 
potential for ethically designed BAIs to enhance workforce participation through integration 
as cognitively augmented workers (CAWs). Economic modeling suggests substantial 
national benefits, including gains in gross domestic product (GDP), higher tax revenues, 
and reduced reliance on welfare systems. Safeguards are outlined for protecting mental 
autonomy, governing neural data, and ensuring equitable labor regulation. A phased 
implementation program is further proposed, linking engineering trials and workplace pilots 
to quasi-experimental evaluation and general equilibrium analysis. Taken together, these 
elements constitute the paper’s core contribution: a unified conceptual, economic, and 
governance framework for integrating individuals with BIF as CAWs through co-adaptive 
BAIs. Responsibly developed BAIs, grounded in co-adaptation, offer a pathway to individual 
empowerment and inclusive societal progress through scalable cognitive augmentation.
Keywords:	�AI; brain-computer interface; neurotechnology; borderline intellectual functioning; 

cognitive augmentation 

INTRODUCTION

Individuals with borderline intellectual functioning (BIF), commonly defined as having an 
intelligence quotients (IQ) between 70 and 85 (Peltopuro et al., 2023), face distinctive cognitive and 
adaptive challenges that limit their educational and employment opportunities. Under the conventional 
assumption of a normal distribution of IQ scores (μ=100, σ=15), the range of 70 to 85 aligns with 
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z-scores in the interval [-2, -1], representing approximately 13.6% of the population. This estimate 
remains approximate, as observed prevalence rates vary according to the context of the assessment 
and the sampling strategies employed. Despite their significant representation, individuals with 
BIF are seldom identified as having special needs (Orío-Aparicio et al., 2025), resulting in limited 
support. These challenges are particularly evident in labor market outcomes. A Finnish population 
study found that individuals with BIF were employed at roughly half the rate of the general 
population, indicating a substantial employment gap (Peltopuro et al., 2023). These findings 
indicate markedly reduced long-term economic participation among the BIF group (Peltopuro et 
al., 2023).

A bidirectional brain-computer interface (BCI) integrated with AI in a co-adaptive, closed-loop 
configuration, hereafter referred to as a brain-AI interface (BAI), may present a promising solution 
to this problem by enabling dynamic and reciprocal communication between the human brain 
and an AI system. Hughes et al. (2020) define bidirectional BCIs as systems that not only decode 
neural signals to control external devices but also deliver somatosensory feedback to the brain 
through electrical stimulation. These interfaces establish a two-way channel between the brain and 
the external world by integrating motor output and sensory input. Building upon this foundation, 
the BAI, as a co-adaptive and closed-loop form of bidirectional BCI, can be conceptualized as an 
advanced architecture in which the brain interacts directly with an AI system capable of adaptive 
response, contextual interpretation, and real-time cognitive collaboration. In theory, this enables 
the AI to continuously support the user’s cognition by providing memory prompts, guidance, and 
learning support.

The system can dynamically adapt to the user’s neural responses in real-time, as demonstrated in 
BCI-based approaches to cognitive augmentation involving memory, attention, problem-solving, 
and executive function (Cinel et al., 2019; Hampson et al., 2006). While these applications remain 
within the scope of BCI technologies, the BAI concept represents an advanced configuration 
within this framework, capable of interpreting higher-order cognitive intent, supporting contextual 
understanding, and modulating its behavior through continuous co-adaptation. By establishing a 
constant closed-loop between the human brain and AI, a BAI may further enhance these functions 
beyond the capacities demonstrated in current BCI research.

Within this framework, individuals with BIF supported by BAI systems may function as 
cognitively augmented workers (CAWs), capable of performing complex work tasks that might 
otherwise exceed their unaided cognitive capacity (Fig. 1). With proper assistance, CAWs could 
contribute more effectively to modern economies by filling roles that utilize their AI-enhanced 
skills. This approach provides new insights into the potential contributions of this historically 
marginalized group. In the sections that follow, we examine the workforce disparities faced by 
individuals with BIF, explore how a BAI-based technology might address these challenges, and 
analyze the socioeconomic and ethical implications of deploying CAWs at scale.

LOW LABOR FORCE PARTICIPATION AMONG INDIVIDUALS 
WITH BORDERLINE INTELLECTUAL FUNCTIONING (BIF):  
STRUCTURAL BARRIERS AND SOCIOECONOMIC IMPLICATIONS 

Labor force participation and employment outcomes for individuals with BIF are substantially 
lower than those of neurotypical individuals (Peltopuro et al., 2023). Across various studies, 
individuals with BIF experience higher rates of unemployment than the general population 
(Emerson et al., 2018; Peltopuro et al., 2023). For instance, in Finland, approximately 43.6% of 
working-age individuals with BIF were employed, compared to 88.1% in the general working 
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population (Peltopuro et al., 2023). Additionally, 30.8% of individuals with BIF were classified 
as pensioners, whereas only 5.3% of the general population received a pension (Peltopuro et al., 
2023). Similarly, research from the United Kingdom indicates that full-time employment rates 
for individuals with BIF range between 42% and 47%, which is significantly lower than the rates 
observed among neurotypical peers, ranging from 54% to 62% (Emerson et al., 2018). Although 
some individuals with BIF secure employment, they are disproportionately represented in part-
time roles and are often concentrated in low-skilled, low-wage positions that offer poor job security 
(Emerson et al., 2018; Peltopuro et al., 2023). Consequently, they frequently earn considerably less 
than their neurotypical counterparts, which contributes to greater economic hardship within this 
demographic (Emerson et al., 2018; Orío-Aparicio et al., 2025; World Economic Forum, n.d.). 
Many become trapped in a cycle of underemployment or irregular work. This leads to greater 
dependence on welfare systems or family support (Peltopuro et al., 2023).

Specific data on individuals with BIF are scarce because they are not often tracked separately. 
Nonetheless, it is evident that many face a steep climb as they experience chronic unemployment 
or instability in low-wage jobs, which further restricts personal income and contributes to broader 
socioeconomic challenges. Recent findings highlight this pronounced labor market gap, showing 
that individuals with BIF experience significantly higher unemployment rates, lower earnings, and 
a greater reliance on social safety nets than the general workforce (Emerson et al., 2018; Peltopuro 
et al., 2023).

Given these persistent disparities, there is a growing imperative to reconsider how individuals 
with BIF can be more effectively integrated into the labor force. Rather than viewing this 
population solely through the lens of deficit or dependency, a shift toward capability-oriented 
frameworks that leverage emerging technologies may prove beneficial. Such an approach recognizes 
the latent potential of individuals with BIF when they are supported by tailored vocational 
training, intelligent assistive systems, and inclusive workplace practices enabled by technological 
advancement.

Fig. 1. ‌�Definition Box: Brain-Artificial Intelligence Interface (BAI) and Cognitively Augmented Worker (CAW).

Brain-Artificial Intelligence Interface (BAI). A BAI is a specialized, AI-integrated 
form of brain-computer interface that enables bidirectional, co-adaptive communication 
between the human brain and computational systems. BAIs interpret neural signals in 
real-time, contextualize them through AI-driven analysis and deliver adaptive feedback 
to support memory, attention, decision-making, and emotional regulation. By combining 
neural interfacing with AI-based adaptability, BAIs extend traditional BCIs and provide 
personalized, evolving support aligned with the user’s goals and context.

Cognitively Augmented Worker (CAW). A CAW is an individual whose cognitive 
performance is enhanced through continuous, adaptive interaction with a BAI. CAWs 
receive real-time assistance for memory retrieval, attentional control, procedural execution, 
and emotional modulation. Dynamic co-adaptation allows users to refine and shape the 
interaction over time, enabling complex, cognitively demanding work while preserving 
autonomy and agency.
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THE ROLE OF BRAIN-ARTIFICIAL INTELLIGENCE INTERFACES 
(BAIs) IN WORKFORCE AUGMENTATION

Traditional BCI systems have predominantly functioned as unidirectional interfaces, enabling 
users to issue commands or control cursors based on neural activity, or to receive one-way 
stimulation that offers only limited feedback (Zhang et al., 2020). In contrast, recent advancements 
in bidirectional BCI architectures have introduced real-time bidirectional control, integrating motor 
intention decoding with the delivery of sensory feedback. For instance, individuals with severe 
motor impairments have regained ambulatory control and perceived bilateral leg sensations through 
such systems, thereby partially restoring sensorimotor function (Lim et al., 2025). Building on 
this paradigm, BAI holds significant potential not only for restoring disrupted motor and sensory 
pathways but also for augmenting cognitive capacities in individuals with BIF, potentially enabling 
them to perform structured tasks at levels comparable to neurotypical workers.

In practical terms, BAIs for CAWs may function as described below. CAWs are equipped with 
neural interfaces, either implanted or in the form of a non-invasive headset, which are expected to 
monitor brain signals associated with attention, comprehension, memory, and stress. AI companion 
systems, tuned to the CAWs’ cognitive profiles, analyze these signals along with the context of the 
tasks at hand. While current applications primarily focus on preventing declines in user efficiency 
(Karim et al., 2024; Kumar et al., 2023), it is conceivable that BAI-based systems intended to 
enhance cognitive performance may become viable in the near future. Supporting this possibility, 
evidence suggests that BCI-based neurofeedback training can enhance cognitive functions in 
conditions such as attention deficit hyperactivity disorder and mild cognitive impairment (Edelman 
et al., 2025). Such assistance may help CAWs recall procedures, recognize patterns, and focus on 
relevant details. 

A detailed, phased technological development roadmap has been outlined to facilitate this 
integration, offering a promising outlook for future advancements.

Neuro-Artificial Intelligence (AI) Infrastructure and Software Development 
The first phase focuses on constructing the fundamental BAI platform by advancing both the 

neural interface hardware and the AI-driven software pipeline. A key goal is to achieve reliable, 
real-time translation of brain signals into actionable commands for AI systems, thereby forming a 
robust communication loop between the user’s brain and the artificial agent.

To frame the complex functionality of future BAIs, the system architecture can be divided 
into two interdependent domains: Research A and B. Research A encompasses the acquisition, 
preprocessing, and decoding of neural signals, focusing on both hardware and algorithmic 
mechanisms for extracting meaningful information from brain activity. Research B, by contrast, 
concerns the return flow of information. It focuses on how processed signals can be fed back into 
the brain or interface to modulate neural activity, enhance cognitive performance, and support 
adaptive plasticity. While each component addresses a distinct stage within the signal-to-action 
pipeline, they are increasingly likely to function as an integrated loop in more advanced systems. 
These developments collectively suggest the potential for cognitive augmentation through tightly 
integrated neural-AI systems.

Research A: Neural Signal Processing and Interpretation
Neural signal processing and interpretation form the foundation of any BCI system, beginning 

with the seamless acquisition of brain activity and extending to real-time preprocessing and 
decoding. To meet the stringent temporal and energy constraints of modern applications, 
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researchers have increasingly focused on both hardware-level signal conditioning and software-level 
interpretation. High-bandwidth neural interfaces and on-device preprocessing units are essential 
for capturing clean, high-dimensional brain signals (Luan et al., 2020).

Building on this foundation, Liu et al. (2025) propose a memristor-based neuromorphic decoder 
that integrates signal preprocessing and feature extraction into a single-step matrix operation. This 
hardware innovation yields a 216-fold increase in decoding throughput and a 1,643-fold reduction 
in energy consumption compared to conventional CPU-based approaches, thereby enabling real-
time performance in resource-limited environments.

In parallel, algorithmic developments have advanced the accuracy and robustness of neural 
decoding. Convolutional neural networks (CNNs) and long short-term memory (LSTM) 
networks have been applied to extract motor intentions and cognitive states from neural recordings 
(Kuo et al., 2024; Viviani et al., 2023), while Bayesian inference methods have enhanced 
electroencephalography (EEG)-based communication paradigms for individuals with paralysis 
(Hong et al., 2023).

A striking example of decoder-centered innovation is provided by Littlejohn et al. (2025), who 
developed a streaming neural-to-speech AI decoder capable of translating intracortical signals 
from a completely paralyzed individual into fluent, audible speech in near real-time. This system 
demonstrates the extraordinary potential of deep learning–based decoders to restore expressive 
communication by directly mapping intended neural activity to continuous speech output, bridging 
the gap between cognitive intent and social interaction.

While these breakthroughs highlight the expressive potential of neural decoders, their practical 
realization requires deployment in real-world, resource-constrained environments. To this end, 
researchers have begun integrating neural decoding systems at the edge. To support real-time 
operation in low-power settings, hardware-embedded deep learning frameworks have been coupled 
with neural interface systems. Rokai et al. (2023) present a two-stage spike-sorting pipeline that 
combines self-supervised feature embedding with supervised spike detection. Optimized for real-
time execution on edge Tensor Processing Units (TPUs), their system processes neural signals 
directly from brain implants without the need for cloud offloading. By collocating TPU-based 
inference with neural recording hardware, the system achieves low-latency spike classification and 
sorting at the edge, thereby substantially reducing reliance on centralized computation.

These innovations considerably improve the efficiency of capturing and decoding neural signals. 
Yet the next frontier is to determine how processed information can be fed back into the brain to 
guide and adapt neural activity.

Research B: Bidirectional Feedback and Adaptive Modulation
Bidirectional feedback and adaptive modulation represent a shift in human–machine interaction 

from static interpretation to dynamic, co-evolving engagement. In contrast to open-loop models 
that extract neural information without further interaction, bidirectional systems return feedback to 
the user and modify their internal state based on the user’s neural response. This feedback may be 
implicit or explicit, sensory or cognitive, but its function is always regulatory. It allows the system 
to adjust its operation in response to the user’s changing goals, mental states, or neural patterns, 
thereby maintaining alignment over time.

A striking example of implicit feedback is reported by Liu et al. (2025), who developed a 
memristor-based neuromorphic decoder capable of both real-time inference and adaptive updates. 
The system detects error-related potentials as neural feedback, using them to update the decoder 
during ongoing interaction. Over six hours of continuous use with ten participants, the co-
evolution of brain signals and the decoder yielded an average 20% improvement in accuracy, with 
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both neural patterns and decoder maps progressively converging. This demonstrates a hardware-
level realization of adaptive feedback, in which biological and artificial components jointly evolve 
through continuous modulation.

Further evidence of automatic feedback processes comes from closed-loop neuromodulation 
studies. By monitoring brain activity and delivering targeted stimulation in response to detected 
anomalies, such systems have been shown to refine motor control and enhance cognitive function 
through reinforcement of plasticity and improved signaling efficiency ( Jin et al., 2024; Ros et al., 
2014). These approaches exemplify how BAIs can intervene directly at the neural circuit level, 
providing stability and functional gains without requiring conscious effort from the user.

Taken together, these findings suggest that implicit and automatic forms of feedback may 
be particularly suited to individuals with BIF. By progressively stabilizing neural dynamics and 
adapting system parameters in real-time, such mechanisms can create a supportive environment in 
which the brain and artificial agents co-evolve, sustaining reliable performance with minimal user 
burden.

Integrated Outlook
Integrating these domains is likely to be essential for advancing BAI systems. Building on this 

integration, Fig. 2 illustrates a conceptual closed-loop architecture in which neural signals 
representing the brain’s electrical activity and reflecting user intentions are dynamically combined 
with external instructions that provide contextual task guidance. At each time step t , the decoder 

( )θ dec
t tD  receives the neuronal signal tn  and the external stimulus or instruction tIN  as inputs 

and produces an intermediate representation th . The execution module ( )θ exe
t tE  maps th  into a 

control signal tc , which induces the observed performance tp . The deviation δ = −t t tp p  is 
computed by comparing tp  with the expected performance tp . The loss ( )δ=t tL g  is calculated 
within the adaptive feedback unit and used to update the parameters of both the decoder and the 
execution module.

Fig. 2. ‌�Hypothetical closed-loop model integrating neuronal signals and external instructions for adaptive 
task execution. Symbols correspond to those defined in the main text.
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θ θ θ+ = + ∆1
dec dec dec
t t t

θ θ θ+ = + ∆1
exe exe exe

t t t

Through this closed-loop process, the system continually refines its decoding and execution 
modules in real-time, achieving co-adaptive integration between neural interpretation and stimulus-
driven task performance.

Within this framework, neural activity that encodes user intent is systematically merged with 
contextual guidance to direct task execution through a process of iterative self-optimization. 
By comparing ongoing performance with expected results, the system incrementally adjusts 
its internal parameters, leading to progressive improvements in responsiveness, efficiency, and 
alignment with user needs. As these processes evolve, such co-adaptive learning is expected to 
facilitate the transition from discrete modular pipelines to holistic, co-evolving architectures that 
engage dynamically with the brain. Ultimately, these architectures may enable personalized closed-
loop systems that support executive functions, enhance the performance of complex tasks, and 
promote fuller participation in cognitively demanding environments. Over time, this developmental 
trajectory may help transform individuals with BIF into CAWs capable of sustained and adaptive 
performance in dynamic settings.

Customization for Individual Needs
No two individuals with BIF exhibit identical cognitive profiles; therefore, it is necessary to tailor 

the AI assistant to each user ( Jankowska et al., 2021). This variability is rooted in stable trait-level 
differences that shape how each person processes information and engages with tasks. For instance, 
one individual may show marked difficulties with reading comprehension, struggling to extract 
meaning from written text, whereas another may have particular limitations in mental arithmetic, 
finding it challenging to retain numerical information or manipulate quantities in working memory 
( Jankowska et al., 2021). Others may present uneven profiles in which certain executive functions, 
such as planning, organization, or inhibitory control, are disproportionately affected relative to 
overall cognitive ability.

Such heterogeneity means that a uniform design is insufficient. Instead, the AI must be 
capable of mapping these distinctive profiles and aligning its assistance accordingly. For a user 
with language-related difficulties, the system might rely more heavily on visual cues, simplified 
instructions, or multimodal presentation of information. By contrast, for a user with mathematical 
weaknesses, the system could provide stepwise scaffolding for numerical operations, frequent 
prompts for verification, or tools that externalize memory demands. In both cases, the AI’s 
interaction style, including the type of cues, the frequency of feedback, and the level of detail, is 
adjusted to match the user’s enduring cognitive characteristics.

This approach does more than enhance task performance; it also seeks to preserve each 
individual’s unique identity. By adapting to enduring cognitive traits rather than overriding them, 
the BAI supports the person as they are, helping them participate more fully without erasing 
the distinctive ways in which they process and experience the world. Trait-level customization, 
therefore, serves as both a practical necessity and an ethical commitment to respecting individuality 
within augmentation.

Workplace Integration and Adaptations
Alongside ongoing technological development, it remains essential to integrate BAI into actual 
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work environments (Gonfalonieri, 2020). With the ongoing evolution of BCI technologies, their 
integration may progressively require the careful design of jobs and workflows to accommodate 
CAWs, along with adjustments to training processes. This process can follow three operational steps: (1) 
Task analysis, in which existing jobs are broken down into discrete tasks to identify requirements and 
constraints; (2) Selection of CAWs-compatible tasks, focusing on activities most likely to benefit from 
AI-supported cognitive augmentation; and (3) application programming interface (API) integration, 
in which task-specific instructions and manuals are made accessible through interfaces that enable AI 
to retrieve information from company databases and deliver it directly to workers.

To ensure smooth deployment in real-world settings, the underlying neurotechnology must 
also adapt to dynamic workplace environments. While reliable BCI use has traditionally depended 
on periodic calibration and designated quiet zones (Chavarriaga et al., 2017; Rashid et al., 2020), 
next-generation systems are expected to leverage real-time artifact removal algorithms (Schmoigl-
Tonis et al., 2023). Recent progress in short and zero-calibration EEG techniques (Ko et al., 2021), 
alongside motion-tolerant wearable systems (Casson, 2019), suggests that such platforms may 
eventually operate robustly in more naturalistic, noise-prone work environments.

Just as awareness campaigns have long played a critical role in reducing stigma and fostering 
understanding of individuals with disabilities (Scior et al., 2020), it is equally important to 
cultivate informed and nuanced awareness of the capabilities and limitations of CAWs. Such 
awareness among managers and colleagues can help foster an inclusive team environment and 
mitigate misconceptions about how CAWs interact with conventional workflows. Additionally, 
pilot programs across various industries, such as manufacturing and office data entry, should be 
carefully developed and implemented. These programs will enable systematic evaluation of CAW 
effectiveness in practical settings and help identify the types of workplace accommodations needed 
to support both their performance and integration.

SOCIOECONOMIC TRANSFORMATION OF INDIVIDUALS WITH 
BORDERLINE INTELLECTUAL FUNCTIONING (BIF) INTO COG-
NITIVELY AUGMENTED WORKERS (CAWs)

Individuals with BIF are primarily restricted to low-skilled labor positions (Emerson et al., 2018; 
Peltopuro et al., 2023). Targeted cognitive augmentation through AI-driven systems could support their 
transition into more stable forms of employment and facilitate access to regular income. As a result, 
such developments may significantly enhance their financial independence and long-term security.

From Margins to Meaning: Cognitive Augmentation and the Recovery of 
Self-Worth in Individuals with Borderline Intellectual Functioning (BIF) 

The primary rationale for enabling individuals with BIF to work as CAWs through BAI is 
economic stabilization, as structured employment can provide regular income and support long-
term financial independence (Peltopuro et al., 2023). Beyond this, however, there are important 
psychosocial effects that follow from sustained workplace participation. Individuals with BIF face 
elevated risks of anxiety and depressive symptoms, often associated with social isolation, diminished 
self-worth, and exclusion from education or employment (Hassiotis et al., 2019; Peltopuro et al., 
2023). Engagement as CAWs can mitigate these difficulties by creating structured opportunities 
to contribute in visible and meaningful ways, thereby enhancing self-esteem and fostering a 
stronger sense of purpose. Research consistently shows that employment is linked not only to 
material security but also to improved mental health and greater life satisfaction, a pattern also 
evident among those with cognitive or intellectual impairments (Emerson et al., 2018). Moreover, 
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inclusive and collaborative workplaces can strengthen interpersonal connections, promote a sense 
of belonging, and gradually reduce stigma as coworkers gain sustained exposure to CAWs in 
functional roles (Peltopuro et al., 2023). Taken together, while economic stability remains the central 
driver, these additional psychosocial gains highlight the broader value of BAI-enabled employment 
for long-term wellbeing and social integration.

Macroeconomic Impact of Integrating Cognitively Augmented Workers 
(CAWs): From Labor Expansion to Fiscal Contribution 

For modeling purposes, all numerical results are presented as final values rounded to the second 
decimal place, with intermediate calculations performed using the original unrounded figures to 
ensure accuracy. The share of individuals with BIF in the total population is fixed at =BIF 0.136p  
(Peltopuro et al., 2023). The integration ratio ( )α  represents the proportion of the population of 
individuals with BIF equipped with BAI systems who are successfully integrated into the workforce 
as CAWs, while the relative productivity ratio ( )β  denotes the average productivity of CAWs as a 
fraction of the general workforce’s productivity. The gross domestic product (GDP) elasticity 
coefficient ( )θ  reflects the percentage change in GDP associated with a 1% change in the labor 
supply, and is set at [ ]θ ∈ 0.43,0.48  based on empirical studies of advanced economies (Haider et 
al., 2023). 

Combining these elements, the macroeconomic effect can be expressed in closed form as:

	 ( )θ αβ∆ = × × ×BIF working-age% 100GDP p p 	 (3)

Where working-agep  is the share of the population in the working-age bracket. 
For sensitivity analysis, two demographic cases are considered: − = 0.60working agep  (yielding 
[ ]κ ∈ 3.51,3.92 ) and − = 0.70working agep  (yielding [ ]κ ∈ 4.09,4.57 ), where κ  is the composite 

multiplier preceding αβ . 

Baseline Scenario 
Assuming α = 0.30 and β = 0.5 , we obtain αβ = 0.15 .
· For − = 0.60working agep :   
           [ ]∆ = × ⇒% 3.51,3.92 0.15 0.53% to 0.59%GDP
· For − = 0.70working agep :
          [ ]∆ = × ⇒% 4.09,4.57 0.15 0.61% to 0.69%GDP

Thus, under conservative assumptions, CAW integration could expand GDP by approximately 
0.53% to 0.69%.

Optimistic Scenario 
Assuming α = 0.70 and β = 0.80 , we obtain αβ = 0.56 .
· For − = 0.60working agep :
          [ ]∆ = × ⇒% 3.51,3.92 0.56 1.96% to 2.19%GDP           
· For − = 0.70working agep :
          [ ]∆ = × ⇒% 4.09,4.57 0.56 2.29% to 2.56%GDP

This scenario illustrates the substantial potential GDP gains that can be achieved if integration 
rates and relative productivity improve through technological refinement, workplace adaptation, and 
the broader adoption of CAWs.
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Interpretation and Implications 
While these projections necessarily abstract from real-world complexities such as device acquisition 

and maintenance costs, training and retraining investments, sector-specific productivity differentials, 
and institutional capacity constraints, they nevertheless underscore the macroeconomic potential of 
inclusive AI-enabled employment strategies. At a sufficient scale, higher participation of CAWs in the 
labor market could contribute not only to GDP growth but also to easing fiscal pressures on healthcare, 
disability support, and other social service systems, while advancing broader social inclusion goals.

Beyond their role in increasing aggregate output, CAWs integrated into formal employment 
structures could transition from being net recipients of public resources to becoming net 
contributors to public revenues. This shift would occur through income taxation, social security 
contributions, and indirect taxation, achieved through increased consumption. Such a transition 
would represent a significant repositioning for individuals with BIF, both economically and socially, 
by reframing them as active economic agents whose contributions reinforce fiscal sustainability.

In summary, the integration of CAWs into the workforce holds the potential to enhance 
economic resilience by expanding productive capacity, stimulating domestic demand, and 
broadening the fiscal base. The magnitude of these benefits will ultimately depend on the quality 
of program design, the scalability of supporting infrastructure, and the extent to which workplace 
environments and management practices are adapted to maximize CAW effectiveness.

COGNITIVELY AUGMENTED WORKERS (CAWs) VS. ROBOTICS 

When deploying CAWs in the workforce, one essential consideration is the strategic balance 
between human enhancement and the increasing reliance on robotic or AI-driven automation. 
This question is particularly salient in sectors dominated by routine or low-skilled labor, where 
technological substitution and augmentation may present overlapping possibilities. A critical 
decision thus lies in choosing between investing in CAWs and pursuing full automation to address 
labor shortages and efficiency demands.

While robotic and AI-based systems are often promoted as comprehensive solutions to 
productivity gaps, complete automation frequently entails substantial financial investment and 
technical complexity (Campilho & Silva, 2023). Moreover, for tasks that require contextual 
judgment, adaptability, and nuanced decision-making, the marginal returns from full automation 
may be constrained (Manyika et al., 2017). By contrast, combining human labor with forms of 
automation short of full automation provides a more adaptable and potentially cost-efficient 
alternative to exclusive reliance on full automation (Nguyen & Elbanna, 2025). This approach 
can capitalize on the inherent adaptability of human workers, an asset that even sophisticated 
autonomous systems may struggle to replicate.

Robotics vs. Cognitively Augmented Workers (CAWs): Cost Considerations
Although both humanoid robotics and BAI systems are regarded as potentially transformative 

technologies for augmenting human labor, it is not yet possible at the current stage of development 
to establish a clear cost efficiency advantage for either approach. Commercially available humanoid 
robots designed for applications such as elder care, logistics, and hospitality vary widely in price, 
ranging from approximately USD 30,000 to over USD 100,000, depending on factors such as 
customization, durability, and functional capability (Qviro, 2024). In contrast, the current estimated 
cost of implementing a BCI-based system, which includes BAI prototypes, is centered around USD 
50,000. This cost is primarily driven by the implantable device itself and the specialized personnel 
training required to ensure safety and effectiveness (UNILAD, 2025). Elon Musk has suggested 
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that future mass production could reduce BCI costs to levels comparable to those of consumer 
electronics, such as smartwatches (Benzinga, 2024), although such projections remain speculative.

Each technology involves a unique and complex cost structure. Humanoid robots require not 
only hardware acquisition but also long-term expenses for maintenance, energy consumption, 
and software updates. BAI systems require surgical implantation, ongoing clinical oversight, and 
long-term biocompatibility management, each of which introduces medical risk and uncertainty 
regarding long-term sustainability. Furthermore, robotics benefits from relatively mature production 
pipelines and an expanding number of commercial deployments, whereas BAI remains at an early 
prototypical stage with limited large-scale clinical applications.

At present, neither peer-reviewed studies nor official government or intergovernmental statistics 
provide directly comparable total cost of ownership (TCO) data for humanoid robotics and CAW 
configurations operating under equivalent specifications in the same period. In the absence of high-
reliability data, this analysis has necessarily relied on grey literature sources, including industry 
reports, corporate announcements, specialized blogs, and media articles, to obtain preliminary 
insight into market trends and cost structures. Although such sources can offer useful indicative 
information, they often lack methodological transparency and representative sampling. The price 
ranges cited above are therefore drawn from grey literature and should be regarded as indicative 
rather than definitive values.

Conceptual Framework for Total Cost of Ownership (TCO)-Based Comparison
Given these limitations in obtaining robust and directly comparable cost data, the present 

study adopts a conceptual TCO framework as a structured approach for assessing both humanoid 
robotics and CAW configurations under equivalent performance specifications. This framework, 
which applies across the full operational lifecycle, organizes cost considerations into four principal 
categories: acquisition, operation, upgrade and maintenance, and end-of-life and disposal. For 
humanoid robotics, these categories encompass factors such as equipment purchase, installation, 
maintenance, energy consumption, and decommissioning. For CAWs, they include device 
procurement, surgical implantation, clinical oversight, software updates, and device removal. Each 
category reflects distinct cost drivers and variability factors, as summarized in Table 1.

Cognitively Augmented Workers (CAWs) and Emotionally Responsive Labor
CAWs may offer advantages in labor settings where emotional intelligence and contextual 

sensitivity are essential. Unlike robots, which operate through fixed algorithms, CAWs may retain 
the human ability to perceive and respond to emotional nuance. When assisted by AI tools that 
support memory, attention, and emotional regulation, they might engage more effectively in roles 
that require empathy and interpersonal awareness.

Caregiving provides a clear example. Fields such as elder care, disability support, and mental 
health services involve relational tasks that extend beyond physical assistance. While robots can 
support routine activities, they may lack the capacity to recognize distress, convey emotional 
warmth, or adjust their behavior in response to subtle cues. CAWs, by contrast, might combine 
their human sensitivity with AI-supported consistency, allowing them to respond more naturally 
and adaptively in emotionally charged situations.

Similar expectations arise in service roles such as hospitality, food service, and customer 
interaction. These sectors rely not only on functional efficiency but also on trust, intuition, and social 
presence. Customers often expect authentic engagement, something that automated systems may 
struggle to replicate. CAWs could meet these needs by integrating their interpersonal capacities 
with AI-guided responsiveness, offering a blend of emotional intelligence and operational reliability.
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The implications of this model may extend beyond individual workplaces. Many economies 
are experiencing persistent labor shortages in essential yet cognitively manageable sectors (Alam, 
2022; Bailey, 2022; OECD, 2019). These roles demand adaptability but do not necessarily require 
advanced academic training. CAWs might offer a viable response to such gaps. 

Cognitively Augmented Workers (CAWs) and the Dual Role of Economic 
Agency

While robots are highly effective at enhancing productivity within production systems, they 
lack the capacity to engage in consumption. This fundamental limitation excludes them from 
participating in the broader production–consumption cycle, thereby restricting their ability to 
contribute to sustained economic dynamism ( Jungmittag & Pesole, 2019). Robotic systems do not 
possess purchasing power, nor do they generate demand for goods and services. As a result, their 
integration, while beneficial for operational efficiency, does not inherently stimulate downstream 
economic activity.

In contrast, CAWs can serve as both producers and consumers within the economic ecosystem. 
Their dual role enables them to contribute not only through labor but also through market 
participation. By earning income and engaging in consumption, CAWs may help sustain the 
cyclical flow of value that underpins economic vitality (King, 2022). This integration fosters a 
more dynamic and inclusive economic model, where technological augmentation enhances human 
agency rather than replacing it. In doing so, CAWs can support not only labor market resilience 
but also aggregate demand, thereby reinforcing the structural sustainability of growth-oriented 
economies (King, 2022).

Complementary Roles in a Diversified Technological Ecosystem
Although CAWs and robotic systems may compete in certain domains, it is more accurate to 

view them as complementary technologies, each suited to specific operational contexts. Robots 
are particularly effective in highly standardized, repetitive, or hazardous environments where 
consistency and mechanical precision are paramount. CAWs, on the other hand, are better 
positioned to operate in settings that demand adaptability, human judgment, or social interaction. 
Rather than seeking a single dominant solution, a diversified labor strategy can integrate both 
approaches according to the demands of each task. 

Table 1. Principal categories for total cost of ownership (TCO) assessment

TCO category Humanoid robotics CAWs

Acquisition Equipment purchase, installation, 
integration, and initial training.

Device cost, medical implantation, and 
training for the user and operator.

Operation
Routine maintenance, energy and 
consumables, and software licensing/
subscriptions.

Clinical oversight, software 
updates, and safety/environmental 
management.

Upgrade and maintenance Hardware module replacements and 
software updates.

Firmware updates and biocompatibility 
interventions.

End of life and disposal Decommissioning, secure data 
deletion, and recycling/disposal.

Device removal surgery, data deletion, 
rehabilitation, and re-implantation.

Expected lifecycle Typical operational lifespan assuming 
standard usage conditions.

Typical operational lifespan based on 
current device replacement cycles.

Key cost variability factors Manufacturing scale, supply chain 
stability, and energy price changes.

Surgical advances, device 
miniaturization, and long-term 
biocompatibility.

The TCO categories presented here capture the principal cost drivers across the full lifecycle of each technology, from acquisition to 
end-of-life, and highlight the distinct factors influencing cost variability for humanoid robotics versus CAWs.
CAWs, cognitively augmented workers.
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ETHICAL, LEGAL, AND POLICY CONSIDERATIONS FOR  
COGNITIVELY AUGMENTED WORKERS (CAWs)

The transformation of individuals with BIF into CAWs should be guided by robust ethical and 
legal frameworks designed to protect their rights and well-being. 

Safeguarding Consent and Cognitive Autonomy
Ensuring informed consent is a critical element. Any implantation or use of BAI should be 

entirely voluntary and based on a clear understanding of its potential risks and benefits. Prospective 
CAWs and their guardians, where applicable, must receive transparent information regarding the 
device’s intended function, the data it may collect, and any potential cognitive or health side effects. 
It is essential that no individual be coerced, directly or indirectly, into receiving a brain implant as a 
condition of employment. Therefore, labor regulations should prohibit employers from mandating 
BAI use and require that such technology be offered as an opt-in assistive tool similar to a 
prosthetic limb, with the objective of empowering rather than exploiting individuals (Dickey, 2024; 
Kim, 2023; Yuste et al., 2017).

A BAI inherently interacts with an individual’s thought processes and thus raises considerable 
concerns regarding potential unauthorized access and unintended influences on neural signals by 
employers or AI providers (Dickey, 2024; Kim, 2023; Yuste et al., 2017). Research on neuroethical 
challenges and emerging legal frameworks suggests that inadvertent access, where neural signals not 
intended for work tasks may be compromised, has the potential to compromise both worker privacy 
and mental autonomy (Dickey, 2024). In accordance with established workplace privacy principles 
(Office of the Privacy Commissioner of Canada, 2023), the default ownership of neural data should 
reside with the individual, and any access by employers should be strictly limited and regulated. 
Furthermore, policies should ensure that BAI systems function solely as closed-loop cognitive aids 
under the user’s control, thereby helping to prevent unauthorized monitoring or manipulation 
of neural activity. Users must also retain an immediate pause control and an audited kill switch 
pathway that reverts to non-augmented operation without penalizing employment status, ensuring 
that disengagement remains a protected right rather than a source of professional disadvantage. 

To further protect the integrity of personal thought processes, robust safeguards such as data 
encryption, anonymization during AI processing, and independent oversight of BAI algorithms 
should be implemented. Fig. 3 illustrates the proposed ‘Neural Data Governance Stack’, a layered 
framework that delineates the principles of user ownership, access control, secure processing, and 
compliance monitoring. Each layer integrates technical mechanisms with governance practices 
to safeguard mental autonomy and ensure the privacy of neural data in BAI-enabled systems. By 
aligning technical protections with enforceable rights and oversight, this model operationalizes 
ethical and legal safeguards in a way that preserves security, transparency, and user-centered control.

Legal Protections and Liability Frameworks
From a legal standpoint, it is essential to revise existing disability and labor laws, such as the 

Americans with Disabilities Act Amendments Act (ADA), to ensure stronger protections for 
individuals who rely on assistive technologies. CAWs may not be regarded as “disabled” in the 
traditional sense because the technology compensates for their impairments; however, under current 
law, such as the ADA, if an individual has a fundamental impairment, they remain eligible for legal 
protection (ADA, 2008). This situation creates a legal gray area that warrants careful consideration 
of the definition of disability under the ADA interpretations. Lawmakers should ensure that 
CAWs are protected against discrimination. For instance, employers should not be permitted 
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to refuse to hire an individual solely because that person requires a BAI device. Such protection 
would be analogous to that afforded to individuals who use wheelchairs or hearing aids (California 
Department of Justice, n.d.). Additionally, employers should provide reasonable accommodations 
for BAI use in a manner consistent with their practices for other assistive devices (California 
Department of Justice, n.d.). Furthermore, workplace safety and insurance raise additional 
challenges. For example, suppose a BAI device malfunctions or contributes to an on-the-job health 
issue, such as triggering a seizure or causing cognitive overload. In that case, clear policies must 
be established to assign liability. Although direct legal precedent for BAI devices may be limited, 
analogous principles from defective machinery suggest that, for example, Occupational Safety 
and Health Administration (OSHA) regulations require employers to maintain safe equipment, 
and manufacturers are held liable under product liability principles as articulated in Restatement 
(Second) of Torts §402A (American Law Institute, 1965–1977); accordingly, in cases of negligence 
liability might be shared by device manufacturers. 

Toward an Ethical and Inclusive Policy Framework
Policy recommendations to foster the ethical deployment of BAI devices should begin with 

the establishment of robust certification and testing guidelines. For example, adopting a regulatory 
process similar to that of the Food and Drug Administration (FDA) for neurotechnology 
aimed at augmentation may help ensure both safety and efficacy prior to a wide-scale rollout 
(FDA, 2021). In parallel, governments may consider implementing financial support or funding 
programs modeled on existing provisions for assistive technologies in order to broaden access for 
those who could genuinely benefit (ACL, 2024). International labor organizations (ILO) may 
contribute by issuing comprehensive standards for integrating neurotechnology in the workplace 
with an emphasis on human rights, worker safety, and inclusivity. However, ILO standards may 
not explicitly address the involvement of specific stakeholder groups. Therefore, it is essential that 

Fig. 3. ‌�Neural data governance stack. This layered framework delineates the principles of user ownership, 
access control, secure processing, and independent oversight. Each layer integrates technical 
mechanisms with governance practices to safeguard mental autonomy and ensure the privacy of neural 
data in BAI-enabled systems. By defining the interplay among ownership rights, access permissions, 
encryption protocols, and independent compliance oversight, the model translates ethical and legal 
safeguards into an operational structure that keeps cognitive augmentation secure, transparent, and 
centered on the user. Conceptually informed by prior work on AI ethics and neurodata governance (Yuste 
et al., 2017; High-Level Expert Group on Artificial Intelligence, 2019)

Oversight & Compliance Layer
Independent oversight, legal and ethical compliance, and audit reporting

Processing Layer
Encrypted processing and anonymization during AI analysis

Access Control Layer
Role-based access, access logs, and real-time monitoring

User Ownership Layer
Users retain ownership and grant explicit consent for access.

Neural Data Governance Stack
Fig 2
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policymaking actively involve representatives from affected communities, such as disability rights 
advocates, neuroethics experts, and other relevant stakeholders, to inform the necessary protections 
and considerations. Ultimately, safeguarding mental autonomy and individual dignity remains 
a core ethical imperative as enshrined in the Universal Declaration of Human Rights (1948). A 
BAI device should be regarded as an empowering tool, similar to an exoskeleton that aids mobility, 
rather than as a mechanism for employers or technology providers to exert undue control or 
harvest brain data. With thoughtful safeguards in place, BAI systems can be integrated in ways 
that respect and empower users. First, adopting Privacy by Design principles from the outset 
ensures that user data and mental privacy are protected (Information and Privacy Commissioner of 
Ontario, n.d.). Additionally, users should retain the ability to pause or disengage the device at will, 
and independent ethics oversight bodies could monitor and audit BAI deployments. Proactively 
establishing the necessary legal framework is essential to avoid potential future pitfalls and to help 
fulfill the promise of inclusive augmentation.

MAPPING THE PATH OF COGNITIVE AUGMENTATION: PROPO-
SITIONS, MEDIATORS, AND BOUNDARY CONDITIONS IN COG-
NITIVELY AUGMENTED WORKER (CAW) INTEGRATION
 
Conceptual Overview: From Brain-Artificial Intelligence Interface
(BAI) to Economic Impact

The proposed framework outlines a four-stage causal pathway through which BAI may 
influence macroeconomic dynamics by first enhancing the cognitive capacity of individuals with 
BIF. It begins with the adoption of BAI, which leads to cognitive enhancement, followed by 
improved job performance, greater employment stability, wage progression, and ultimately broader 
economic effects. Each link in this sequence is examined using three conceptual tools: mediators, 
which clarify the underlying mechanisms; boundary conditions, which define when and for whom 
the effects may vary; and propositions, which guide empirical investigation. As summarized in 
Table 2 and visually depicted in Fig. 4, these elements collectively outline the logical structure of the 
framework and the hypothesized flow from neurocognitive change to macroeconomic outcomes.

The parameters (scope and target population) and preconditions (institutional and technical 
requirements for implementation) of the framework have been specified in the preceding sections. 
They are treated as given in the present analysis. This structure promotes both analytical clarity 
and empirical testability. While the framework provides a theoretically grounded model for 
understanding these interlinked mechanisms, the operationalization and empirical validation of its 
components are beyond the scope of this paper. Future empirical studies are planned to test these 
causal pathways using methodologies such as randomized controlled trials, quasi-experiments, and 
CGE.

Stage-by-Stage Causal Model
As summarized in Table 2, the causal pathway begins with BAI adoption leading to cognitive 

enhancement. The following section elaborates on each proposition in detail, clarifying the 
mechanisms, mediating factors, and boundary conditions that shape the expected outcomes.

Stage 1: BAI Adoption → Cognitive Enhancement

Proposition 1 (P1): If BAI adoption increases working memory capacity in individuals with 
BIF, then task accuracy and sustained focus will measurably improve.
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This proposition captures the first stage of transformation, where BAI functions as a high-
frequency, closed-loop cognitive prosthesis. Its effectiveness hinges on the brain’s capacity for rapid 
adaptation and the system’s ability to deliver highly personalized feedback in real-time.

· �Mediators 
- M1: Speed of neural adaptation 
- M2: Degree of personalization in AI-generated feedback

· �Boundary conditions 
- B1: Long-term biocompatibility of neural interfaces 
- B2: Durability and usability under daily conditions

Interpretation: The integration of BAI can enhance working memory, enabling higher task 
accuracy and sustained focus in cognitively demanding roles. Such gains reduce cognitive load, 
optimize neural processing efficiency, and free up resources for complex reasoning and decision-
making. These benefits can extend to fields requiring precise procedural execution and adaptive 
collaboration, such as advanced technical operations and coordinated team-based tasks.

Table 2. Summary of propositions across the four-stage causal model

Stage Proposition Mediators Boundary  
conditions

Expected 
outcome

Stage 1
BAI 
 ↓

Cognition

P1: If BAI adoption increases 
working memory capacity, 
then task accuracy and 
sustained focus will 
measurably improve.

M1: Speed of neural 
adaptation
M2: Degree of 
personalization

B1: Long-term 
biocompatibility
B2: Hardware 
durability in daily use

Enhanced 
working 
memory

Stage 2
Cognition 

 ↓
Performance

P2: If coaching and response 
latency are optimized, job 
performance in complex 
environments will improve.

M3: Frequency of AI 
coaching
M4: BAI response 
latency

B3: Task type (routine 
vs. creative)

Better task 
performance

Stage 3
Performance 

↓
 Employment

P3: If culture and job design 
are supportive, retention and 
wages rise.

M5: Organizational 
acceptance
M6: Task redesign

B4: Labor elasticity; 
how easily firms 
adjust workforce 
size in response to 
demand (sectoral)

Higher 
retention and 
pay

Stage 4
Employment 

↓
Economy

P4: If macro conditions 
are favorable, labor gains 
contribute to GDP and fiscal 
growth.

M7: Real wage 
increase
M8: Tax revenue and 
transfer shifts

B5: Macroeconomic 
climate

GDP growth 
and fiscal 
balance

This table summarizes the causal progression from neurocognitive change to macroeconomic outcomes, specifying mediators and 
boundary conditions at each stage. Detailed interpretations for each proposition are elaborated in the subsequent ‘Stage-by-Stage 
Causal Model section’, which provides expanded discussion, contextual analysis, and practical implications.
P=Proposition: A concise, testable statement linking specified conditions to expected outcomes. Each proposition represents a hy-
pothesis that can be empirically examined to assess causal relationships.
M=Mediator: An intervening variable that explains the mechanism through which the proposition operates. Mediators provide insight 
into the pathways and processes that connect conditions to outcomes, enabling more precise theoretical modeling.
B=Boundary Condition: A contextual factor that defines the circumstances under which a proposition remains valid or is applicable. 
These conditions determine the scope and applicability of the propositions across contexts, ensuring that findings are interpreted 
and applied with situational relevance.
The downward arrows (↓) indicate the directional flow of causality across the four sequential stages in the model: Stage 1 – BAI to 
Cognition, Stage 2 – Cognition to Performance, Stage 3 – Performance to Employment, and Stage 4 – Employment to Economy.
This four-stage causal model is designed to integrate micro-level cognitive mechanisms with macro-level socioeconomic outcomes. 
Each stage builds on the preceding one, creating a cumulative pathway from individual neural adaptation and performance improve-
ment to workforce integration and, ultimately, national economic impact.
While the propositions are presented in a linear sequence, the model acknowledges potential feedback effects between stages in 
practical applications. However, for analytical clarity, such bidirectional effects are not depicted in this summary table.
AI, artificial intelligence; BAI, brain–artificial intelligence interfaces; GDP, gross domestic product. 
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Stage 2: Cognitive Enhancement → Job Performance Improvement

Proposition 2 (P2): If coaching frequency and system response latency are optimized, overall job 
performance in terms of accuracy, speed, and efficiency is expected to improve in complex work 
environments.

This proposition extends the first wave of enhancement into the workplace. Real-time, context-
aware feedback from BAI enables users to reduce cognitive load and errors during task execution.

· �Mediators 
- M3: Frequency of AI coaching 
- M4: Response speed of the BAI system to user-initiated queries

· �Boundary conditions 
- B3: Nature of the task (e.g., routine vs. creative or volatile)

Interpretation: Cognitive improvements fostered by BAI can result in lower error rates, faster 
completion of multi-step assignments, and more consistent efficiency across task types. These 
effects are amplified in roles that combine procedural rigor with situational judgment. At the 
organizational level, the outcomes include reduced quality-control overhead, increased throughput, 
and enhanced workplace safety, enabling a more strategic and flexible allocation of human capital.

Fig. 4. Visual representation of propositions, mediators, and boundary conditions for cognitively 
augmented worker (CAW) integration. Fig. 4 complements Table 2 by providing a visual representation of the 
four-stage causal pathway from BAI adoption to macroeconomic outcomes. Boxes indicate sequential stages, 
arrows denote causal direction, and propositions (P1–P4) specify the hypothesized links. Items marked with ↑ (M) 
represent mediators that enable or amplify effects, whereas items marked with ↓ (B) indicate boundary conditions 
that constrain them. BAI, brain–artificial intelligence interfaces.
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Stage 3: Job Performance → Employment Retention and Wage Growth

Proposition 3 (P3): If organizational culture and job design are supportive, CAWs will sustain 
job performance that leads to higher retention and, over time, rising real wages.

This proposition captures the organizational and structural contingencies of augmentation. Even 
if BAI makes individuals more effective, labor outcomes depend on whether the institution values 
augmented capabilities and can adapt tasks accordingly.

· �Mediators 
- M5: Organizational acceptance of cognitive augmentation 
- M6: Extent of task redesign to leverage BAI advantages

· �Boundary conditions 
- B4: Sectoral labor elasticity (i.e., how easily firms adjust workforce size in response to demand)

Interpretation: Sustained improvements in job performance can enhance both employment stability 
and wage growth, provided that organizations recognize and reward augmented capabilities. For 
individuals with BIF, who often face high turnover and insecure employment, continuous BAI support 
can strengthen job fit, foster long-term retention, and create opportunities for gradual improvements in 
compensation. This dual outcome reduces organizational costs related to retraining and reassignment.

Stage 4: Employment and Wages → Macroeconomic Outcomes

Proposition 4 (P4): Stable labor market participation by CAWs will generate positive 
macroeconomic effects, including GDP growth, higher tax revenues, and reduced welfare 
spending.

This final stage links micro-level labor improvements to national-level economic dynamics. 
Fiscal and growth effects are contingent on the economic cycle and policy environment.

· �Mediators 
- M7: Real wage increases across CAWs 
- M8: Shifts in tax revenue and social transfer payments

· �Boundary conditions 
- B5: Macroeconomic climate (e.g., expansion vs. recession)

Interpretation: A stable cohort of CAWs can boost labor market participation rates and raise 
income levels. These micro-level effects can aggregate into macroeconomic gains such as GDP 
growth, increased tax revenues, and reduced welfare expenditures. 

Empirical Research Design Guided by Propositions
To support the empirical validation of the proposed conceptual framework, each proposition 

is matched with a methodologically appropriate research design. The mapping below illustrates 
how distinct methodological approaches can be aligned with each stage of the causal pathway, 
from individual cognitive enhancement to macroeconomic outcomes. Table 2 and Fig. 4 together 
provide complementary perspectives on this conceptual sequence: Table 2 presents the sequential 
stages in tabular form, while Fig. 4 visually depicts the causal linkages and mediating factors across 
these stages. Table 3 then outlines how each component can be translated into a concrete empirical 
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strategy. This structure is intended not as an exhaustive implementation plan, but as a high-level 
roadmap to guide future empirical work.

For clarity, each proposition in Table 3 is defined according to its specific measurement criteria. 
Working memory (P1) is measured as a composite score obtained by averaging the standardized 
(z-score) results from 2-back and 3-back tasks, both of which assess the ability to hold and update 
information over short time intervals. Task performance (P2) is evaluated by calculating errors per 
unit of time, providing an efficiency-adjusted measure of accuracy. Retention (P3) is assessed as the 
proportion of participants maintaining their role over 12 months, reflecting sustained functional 
integration. Macroeconomic outcomes (P4) are quantified using computable general equilibrium 
(CGE) simulations to estimate changes in gross domestic product (ΔGDP) and fiscal balance, 
thereby linking individual-level impacts to broader economic indicators.

Implications for Policy Design
The propositional causal model presented above offers a structured yet adaptable foundation 

for designing policies that support the integration of CAWs through the use of BAI. Rather than 
functioning as a rigid framework, it enables policy actors to engage with the process of augmentation 
in a manner that is context-sensitive, sector-specific, and responsive to economic fluctuations.

By clarifying the mediating variables that transmit effects from one stage to the next, the model 
highlights key leverage points for targeted intervention. For instance, improvements in personalization 
mechanisms or support for neural adaptation may be incentivized through public funding for 
BAI research. Policies that promote job redesign in alignment with cognitive augmentation, such 
as subsidies for AI-compatible workplace tools or retraining schemes, may further facilitate the 
translation of individual cognitive gains into employment stability and wage progression.

Additionally, incorporating boundary conditions into the analysis supports more targeted and 
effective policy responses. Sectors characterized by high labor elasticity may require stronger forms of 
public intervention to mitigate unintended consequences such as job displacement or wage stagnation. 
In contrast, sectors with more stable labor dynamics may respond positively to the gradual and 
strategically phased implementation of BAI. This capacity for tailored decision-making across sectors 
reduces the risk of one-size-fits-all approaches that fail to account for structural variability.

At the macroeconomic level, the model also enables anticipation of broader fiscal and growth-

Table 3. Mapping of causal propositions to empirical strategies

Proposition Methodology Data source Measurable outcomes

P1 Randomized controlled trial Experimental group vs. 
control

Composite working memory score 
(average standardized results 
from 2-back and 3-back tasks), 
attentional control measures, and 
long-term durability markers

P2 Agent-based modeling and 
field study

Simulated environments and 
BAI users

Error rate per unit time and task 
throughput (completion time 
adjusted for accuracy)

P3 Quasi-experiment 
(difference-in-differences)

Organizational-level panel 
data

Proportion of participants retaining 
their role over 12 months, wage 
progression

P4 Computable general 
equilibrium simulation (CGE)

National economic data Change in GDP (ΔGDP) and fiscal 
balance from the CGE simulation

BAI, brain–artificial intelligence interfaces; GDP, gross domestic product.
These methodological approaches align with the causal logic of each proposition. Randomized controlled trials and longitudinal 
cognitive testing are suited for assessing the neurocognitive outcomes in P1. Agent-based modeling combined with real-world 
task data provides evidence for the interactional dynamics in P2. P3 requires organizational-level longitudinal data to isolate 
employment effects of BAI adoption, while P4 uses macroeconomic modeling to capture aggregate fiscal and growth impacts. 
Together, these methods form a multi-level empirical roadmap for validating the theoretical framework.
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related outcomes. When economic conditions are favorable, the productivity and wage effects 
associated with CAWs may contribute to increased tax revenues and reduced welfare expenditures. 
During periods of economic contraction, however, the same dynamics may require compensatory 
policies to safeguard equity and preserve labor participation.

Overall, this causal framework enhances the analytical and normative capacities of policy design. 
It supports both predictive modeling and principled governance by showing when, where, and for 
whom the benefits of CAW might be realized. In doing so, it establishes a more informed basis 
for long-term strategies that promote inclusion, productivity, and fiscal sustainability in an age of 
cognitive augmentation.

CONCLUSION

BAI may offer a promising opportunity to address the ongoing labor market challenges 
experienced by individuals with BIF. By enabling two-way communication between neural systems 
and AI, BAI may facilitate the transition of individuals with BIF into CAWs that can perform 
tasks in more adaptive and skilled ways. In addressing these challenges, the present article offers 
three interrelated contributions. First, it advances a closed-loop conceptual framework in which 
co-adaptive BAIs support the transition of individuals with BIF into CAWs. Second, it provides 
an illustrative macroeconomic model that estimates the potential impact of large-scale CAW 
integration on GDP, tax revenues, and welfare expenditures. Third, it articulates an ethical, legal, 
and policy architecture that includes neural data governance mechanisms and a four-stage causal 
pathway to guide the safe and inclusive deployment of CAWs in real-world labor markets. This 
innovation holds significant potential for enhancing employment outcomes for a population that 
has historically faced high rates of unemployment.

The potential benefits of this inclusive approach are considerable. It could enable individuals 
to shift from long-term welfare dependence toward meaningful participation in the labor force. 
This, in turn, is likely to support national productivity by increasing tax contributions and reducing 
public expenditures, while also enhancing the quality of life for marginalized groups. Realizing 
such outcomes will likely require a balanced and empirically grounded implementation strategy. 
The framework presented under the heading ‘Mapping the Path of Cognitive Augmentation: 
Propositions, Mediators, and Boundary Conditions in CAW Integration’ outlines a tentative four-
stage causal pathway, spanning BAI adoption, cognitive enhancement, improved task performance, 
and broader macroeconomic implications. Each stage is shaped by mediating factors, such as the 
personalization index and coaching frequency, and influenced by contextual boundary conditions, 
including task complexity and labor demand elasticity.

This proposed structure helps clarify both the mechanisms through which CAW integration 
could unfold and the specific conditions under which its success may be more or less likely to occur. 
The propositions contained within the framework, from P1 to P4, provide testable hypotheses that 
can inform future pilot programs, agent-based simulations, and longitudinal research. Incorporating 
these empirical strategies into policy development may strengthen both the reliability and practical 
relevance of future interventions aimed at supporting inclusive labor participation.

From a technological perspective, continued refinement and validation of BAI systems will 
be crucial to ensure that they align with users’ cognitive needs in a safe and effective manner. 
Economically, targeted investments in this domain would benefit from simulation evidence and 
comparisons with similar inclusion efforts. On the ethical and legal fronts, it will be essential to 
construct frameworks that uphold human agency and ensure that CAW integration advances 
rather than undermines dignity. In pursuing these opportunities, it is also necessary to recognize 
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potential limitations and risks. The estimates in this study rely on stylized elasticities and assumed 
integration shares; real-world outcomes will depend on factors such as device safety, variations in 
user characteristics, and the degree of organizational adaptation. If access is unequal, augmentation 
could exacerbate existing disparities. These considerations emphasize the importance of phased pilot 
programs, preregistered analytical protocols, and subsidy schemes designed to promote equitable 
access.

In light of these possibilities, early-stage policy engagement would be timely. Governments 
might consider updating labor regulations to account for the emergence of CAWs and offer 
incentives for employers who adopt inclusive hiring practices. Public investment in cognitive 
augmentation could eventually be considered alongside education and digital infrastructure as 
a foundation for broader economic inclusion. To determine the practical viability of this model, 
empirical research will be indispensable. This may involve pilot testing in real-world work 
environments, simulation-based studies of CAW functionality, and longitudinal tracking of 
cognitive and employment-related outcomes. Such efforts will be necessary to evaluate the validity 
of the proposed causal model and to guide the refinement of implementation strategies.

BAI has the potential to offer a pathway to reconceiving cognitive limitations not as fixed 
barriers, but as challenges that could be addressed through carefully guided innovation. If developed 
and implemented responsibly, CAW integration could support a labor market in which no willing 
individual is excluded on the basis of cognitive constraints. The transition from individuals with BIF 
to CAW may serve as a model for expanding human capability and building a more inclusive and 
adaptive society.

“What gives us worth is not simply reaching for the door. It is having the strength to open it and the 
courage to step into something meaningful.”

REFERENCES

Administration for Community Living (ACL). (2024). ACL awards four assistive technology 
alternative f inancing program (AFP) discretionary grant awards. https://apply07.grants.gov/
apply/opportunities/instructions/PKG00287004-instructions.pdf

Alam, F. (2022). Addressing workforce shortages through equitable design of education and 
opportunities. Journal of Science Policy and Governance, 20(2), 1-6.

American Law Institute. (1965–1977). Restatement of the law, second: Torts §402A. American Law 
Institute Publishers.

Americans with Disabilities Act (ADA). (2008). Amendments Act of 2008, Pub. L. No. 110-325, 122 
Stat. 3553. ADA.

Bailey, P. (2022). Survey: 73% of warehouse operators can’t find enough labor. FreightWaves. https://
www.freightwaves.com/news/survey-73-of-warehouse-operators-cant-find-enough-labor

Benzinga. (2024). Elon Musk says Neuralink brain implants could cost as little as an Apple Watch: ‘We do 
have a game plan’. https://www.benzinga.com/news/24/10/41591053

California Department of Justice. (n.d.). Disability rights in employment. https://oag.ca.gov/system/
files/media/drb-disability-rights-employment.pdf

Campilho, R. D. S. G., & Silva, F. J. G. (2023). Industrial process improvement by automation and 
robotics. Machines, 11(11), 1011.

Casson, A. J. (2019). Wearable EEG and beyond. Biomedical Engineering Letters, 9(1), 53-71.
Chavarriaga, R., Fried-Oken, M., Kleih, S., Lotte, F., & Scherer, R. (2017). Heading for new shores! 

Overcoming pitfalls in BCI design. Brain-Computer Interfaces, 4(1-2), 60-73.



Transforming Individuals with Borderline Intellectual Functioning into Cognitively Augmented Workers

https://doi.org/10.23104/ME.e8 https://www.mechecology.org |  22

MechEcology

Cinel, C., Valeriani, D., & Poli, R. (2019). Neurotechnologies for human cognitive augmentation: 
Current state of the art and future prospects. Frontiers in Human Neuroscience, 13, 13.

Dickey, J. (2024). Navigating the legal and ethical landscape of brain-computer interfaces: Insights from 
Colorado and Minnesota. International Association of Privacy Professionals. https://iapp.org/
news/a/navigating-the-legal-and-ethical-landscape-of-brain-computer-interfaces-insights-
from-colorado-and-minnesota

Edelman, B. J., Zhang, S., Schalk, G., Brunner, P., Müller-Putz, G., & Guan, C. (2025). Non-
invasive brain-computer interfaces: State of the art and trends. IEEE Reviews in Biomedical 
Engineering, 18, 26-49.

Emerson, E., Hatton, C., Baines, S., & Robertson, J. (2018). The association between employment 
status and health among British adults with and without intellectual impairments: Cross-
sectional analyses of a cohort study. BMC Public Health, 18(1), 401.

Food and Drug Administration (FDA). (2021). Regulatory overview for neurological devices. https://
www.fda.gov/medical-devices/neurological-devices/regulatory-overview-neurological-devices

Gonfalonieri, A. (2020). What brain-computer interfaces could mean for the future of work. Harvard 
Business Review. https://hbr.org/2020/10/what-brain-computer-interfaces-could-mean-for-
the-future-of-work

Haider, A., Jabeen, S., Rankaduwa, W., & Shaheen, F. (2023). The nexus between employment and 
economic growth: A cross-country analysis. Sustainability, 15(15), 11955.

Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C., & Constable, R. T. (2006). Brain connectivity 
related to working memory performance. Journal of Neuroscience, 26(51), 13338-13343.

Hassiotis, A., Brown, E., Harris, J., Helm, D., Munir, K., Salvador-Carulla, L., Bertelli, M., 
Baghdadli, A., Wieland, J., Novell-Alsina, R., Cid, J., Vergés, L., Martínez-Leal, R., Mutluer, 
T., Ismayilov, F., & Emerson, E. (2019). Association of borderline intellectual functioning and 
adverse childhood experience with adult psychiatric morbidity: Findings from a British birth 
cohort. BMC Psychiatry, 19, 387.

High-Level Expert Group on Artificial Intelligence. (2019). Ethics guidelines for trustworthy AI. 
European Commission. https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-
trustworthy-ai

Hong, P. J., Asghar, M. A., Ullah, A., Shorfuzzaman, M., Masud, M., & Mehmood, R. M. (2023). 
AI-based Bayesian inference scheme to recognize electroencephalogram signals for smart 
healthcare. Cluster Computing, 26(2), 1221-1230.

Hughes, C., Herrera, A., Gaunt, R., & Collinger, J. (2020). Bidirectional brain-computer interfaces. 
In M. J. Aminoff, F. Boller, & D. E. Swaab (Eds.), Handbook of clinical neurology (pp. 163-181). 
Elsevier.

Information and Privacy Commissioner of Ontario. (n.d.). Privacy by design: The 7 foundational 
principles. https://privacy.ucsc.edu/resources/privacy-by-design---foundational-principles.pdf

Jankowska, A. M., Łockiewicz, M., & Łada-Maśko, A. B. (2021). Heterogeneity of cognitive 
profiles in students with borderline intellectual functioning. Psychiatria Polska, 55(4), 869-885.

Jin, W., Zhu, X., Qian, L., Wu, C., Yang, F., Zhan, D., Kang, Z., Luo, K., Meng, D., & Xu, G. 
(2024). Electroencephalogram-based adaptive closed-loop brain-computer interface in 
neurorehabilitation: A review. Frontiers in Computational Neuroscience, 18, 1431815.

Jungmittag, A., & Pesole, A. (2019). The impact of robots on labour productivity: A panel data approach 
covering 9 industries and 12 countries ( JRC Working Papers Series No. 2019/08). European 
Commission Joint Research Centre.

Karim, E., Pavel, H. R., Nikanfar, S., Hebri, A., Roy, A., Nambiappan, H. R., Jaiswal, A., Wylie, 
G. R., & Makedon, F. (2024). Examining the landscape of cognitive fatigue detection: A 

https://hbr.org/2020/10/what-brain-computer-interfaces-could-mean-for-the-future-of-work
https://hbr.org/2020/10/what-brain-computer-interfaces-could-mean-for-the-future-of-work


Transforming Individuals with Borderline Intellectual Functioning into Cognitively Augmented Workers

https://doi.org/10.23104/ME.e8 https://www.mechecology.org |  23

MechEcology

comprehensive survey. Technologies, 12(3), 38.
Kim, H. (2023). Dual track strategies for technologically augmented humans: Mitigating societal 

conflicts. MechEcology, 2(2), 13-30.
King, C. W. (2022). Interdependence of growth, structure, size and resource consumption during an 

economic growth cycle. Biophysical Economics and Sustainability, 7(1), 1.
Ko, W., Jeon, E., Jeong, S., Phyo, J., & Suk, H. I. (2021). A survey on deep learning-based short/

zero-calibration approaches for EEG-based brain–computer interfaces. Frontiers in Human 
Neuroscience, 15, 643386.

Kumar, K. V. R., Devi, B. R., Sudhakara, M., Keerthi, G., & Madhavi, K. R. (2023). AI-based 
mental fatigue recognition and responsive recommendation system. In Intelligent computing and 
applications (Smart Innovation, Systems and Technologies, Vol. 315, pp. 303–314). Springer.

Kuo, C. H., Liu, G. T., Lee, C. E., Wu, J., Casimo, K., Weaver, K. E., Lo, Y. C., Chen, Y. Y., 
Huang, W. C., & Ojemann, J. G. (2024). Decoding micro-electrocorticographic signals by 
using explainable 3D convolutional neural network to predict finger movements. Journal of 
Neuroscience Methods, 411, 110251.

Lim, J., Wang, P. T., Sohn, W. J., Lin, D., Thaploo, S., Bashford, L., Bjanes, D., Nguyen, A., Gong, 
H., Armacost, M., Shaw, S. J., Kellis, S., Lee, B., Lee, D., Heydari, P., Andersen, R. A., Nenadic, 
Z., Liu, C. Y., & Do, A. H. (2025). Real-time brain-computer interface control of walking 
exoskeleton with bilateral sensory feedback: A neuroadaptive closed-loop study. arXiv preprint 
arXiv:2505.00219.

Littlejohn, K. T., Cho, C. J., Liu, J. R., Silva, A. B., Yu, B., Anderson, V. R., Kurtz-Miott, C. M., 
Brosler, S., Kashyap, A. P., Hallinan, I. P., Shah, A., Tu-Chan, A., Ganguly, K., Moses, D. A., 
Chang, E. F., & Anumanchipalli, G. K. (2025). A streaming brain-to-voice neuroprosthesis to 
restore naturalistic communication. Nature Neuroscience, 28(4), 902-912.

Liu, Z., Mei, J., Tang, J., Xu, M., Gao, B., Wang, K., Ding, S., Liu, Q., Qin, Q., Chen, W., Xi, Y., Li, 
Y., Yao, P., Zhao, H., Wong, N., Qian, H., Hong, B., Jung, T. P., Ming, D., & Wu, H. (2025). 
A memristor-based adaptive neuromorphic decoder for brain–computer interfaces. Nature 
Electronics, 8, 362-372.

Luan, L., Robinson, J. T., Aazhang, B., Chi, T., Yang, K., Li, X., Rathore, H., Singer, A., Yellapantula, 
S., Fan, Y., Yu, Z., & Xie, C. (2020). Recent advances in electrical neural interface engineering: 
Minimal invasiveness, longevity, and scalability. Neuron, 108(2), 302-321.

Manyika, J., Chui, M., Miremadi, M., Bughin, J., George, K., Willmott, P., & Dewhurst, M. (2017). A 
future that works: Automation, employment, and productivity. McKinsey Global Institute. https://www.
mckinsey.com/~/media/mckinsey/featured%20insights/Digital%20Disruption/Harnessing%20
automation-for-a-future-that-works/MGI-A-future-that-works-Executive-summary.ashx

Nguyen, T., & Elbanna, A. (2025). Understanding human-AI augmentation in the workplace: A review 
and a future research agenda. Information Systems Frontiers. https://doi.org/10.1007/s10796-
025-10591-5

Office of the Privacy Commissioner of Canada. (2023). Privacy in the workplace. https://www.priv.
gc.ca/en/privacy-topics/employers-and-employees/02_05_d_17/

Organisation for Economic Co-operation and Development (OECD). (2019). OECD employment 
outlook 2019: The future of work. OECD.

Orío-Aparicio, C., López-Escribano, C., & Bel-Fenellós, C. (2025). Borderline intellectual 
functioning: A scoping review. Journal of Intellectual Disability Research, 69(6), 437-456.

Peltopuro, M., Vesala, H. T., Ahonen, T., & Närhi, V. M. (2023). Borderline intellectual functioning 
and vulnerability in education, employment and family. Scandinavian Journal of Disability 
Research, 25(1), 334-349.



Transforming Individuals with Borderline Intellectual Functioning into Cognitively Augmented Workers

https://doi.org/10.23104/ME.e8 https://www.mechecology.org |  24

MechEcology

Qviro. (2024). How much does a humanoid robot cost? Qviro. https://qviro.com/blog/how-much-
does-a-humanoid-robot-cost/

Rashid, M., Sulaiman, N., Abdul Majeed, A. P. P., Musa, R. M., Ab. Nasir, A. F., Bari, B. S., & 
Khatun, S. (2020). Current status, challenges, and possible solutions of EEG-based brain-
computer interface: A comprehensive review. Frontiers in Neurorobotics, 14, 25.

Rokai, J., Ulbert, I., & Márton, G. (2023). Edge computing on TPU for brain implant signal 
analysis. Neural Networks, 162, 212-224.

Ros, T., Baars, B. J., Lanius, R. A., & Vuilleumier, P. (2014). Tuning pathological brain oscillations with 
neurofeedback: A systems neuroscience framework. Frontiers in Human Neuroscience, 8, 1008.

Schmoigl-Tonis, M., Schranz, C., & Müller-Putz, G. R. (2023). Methods for motion artifact 
reduction in online brain-computer interface experiments: A systematic review. Frontiers in 
Human Neuroscience, 17, 1251690.

Scior, K., Hamid, A., Hastings, R., Werner, S., Belton, C., Laniyan, A., Patel, M., & Kett, M. (2020). 
Intellectual disability stigma and initiatives to challenge it and promote inclusion around the 
globe. Journal of Policy and Practice in Intellectual Disabilities, 17(2), 165-175.

UNILAD. (2025). Elon Musk’s $50,000 Neuralink brain chip explained as third patient has it 
implanted. UNILAD. https://www.unilad.com/technology/news/elon-musk-neuralink-brain-
chip-explained-120061-20250116

Universal Declaration of Human Rights. (1948). Article 12. United Nations. https://www.un.org/
en/about-us/universal-declaration-of-human-rights

Viviani, P., Gesmundo, I., Ghinato, E., Agudelo-Toro, A., Vercellino, C., Vitali, G., Bergamasco, L., 
Scionti, A., Ghislieri, M., Agostini, V., Terzo, O., & Scherberger, H. (2023). Deep learning for 
real-time neural decoding of grasp. arXiv preprint arXiv:2311.01061v1.

World Economic Forum. (n.d.). Closing the disability inclusion gap with business leadership. World 
Economic Forum. https://www.weforum.org/impact/disability-inclusion/

Yuste, R., Goering, S., Agüera y Arcas, B., Bi, G., Carmena, J. M., Carter, A., Fins, J. J., Friesen, 
P., Gallant, J., Huggins, J. E., Illes, J., Kellmeyer, P., Klein, E., Marblestone, A., Mitchell, C., 
Parens, E., Pham, M., Rubel, A., Sadato, N., Specker Sullivan, L., Teicher, M., Wasserman, D., 
Wexler, A., Whittaker, M., & Wolpaw, J. (2017). Four ethical priorities for neurotechnologies 
and AI. Nature, 551(7679), 159-163.

Zhang, X., Ma, Z., Zheng, H., Li, T., Chen, K., Wang, X., Liu, C., Xu, L., Wu, X., Lin, D., & Lin, H. 
(2020). The combination of brain-computer interfaces and artificial intelligence: Applications 
and challenges. Annals of Translational Medicine, 8(11), 712.


